in

Ecological and evolutionary approaches to improving crop variety mixtures

  • 1.

    Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W. & Mortensen, D. A. Agriculture in 2050: recalibrating targets for sustainable intensification. Bioscience 67, 386–391 (2017).

    Article 

    Google Scholar 

  • 2.

    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Weiner, J. Applying plant ecological knowledge to increase agricultural sustainability. J. Ecol. 105, 865–870 (2017).

    Article 

    Google Scholar 

  • 5.

    Sadras, V. et al. Making science more effective for agriculture. Adv. Agron. 163, 153–177 (2020).

    Article 

    Google Scholar 

  • 6.

    Kremen, C. Ecological intensification and diversification approaches to maintain biodiversity, ecosystem services and food production in a changing world. Emerg. Top. Life Sci. 4, 229–240 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Brooker, R. W. et al. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. N. Phytol. 206, 107–117 (2015).

    Article 

    Google Scholar 

  • 9.

    Bullock, D. G. Crop rotation. Crit. Rev. Plant Sci. 11, 309–326 (1992).

    Article 

    Google Scholar 

  • 10.

    Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Hector, A. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Hector, A. et al. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 91, 2213–2220 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Prieto, I. et al. Complementary effects of species and genetic diversity on productivity and stability of sown grasslands. Nat. Plants 1, 15033 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Blüthgen, N. et al. Land use imperils plant and animal community stability through changes in asynchrony rather than diversity. Nat. Commun. 7, 10697 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 18.

    Voss-Fels, K. P. et al. Breeding improves wheat productivity under contrasting agrochemical input levels. Nat. Plants 5, 706–714 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Zuppinger-Dingley, D. et al. Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515, 108–111 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Chacón-Labella, J., García Palacios, P., Matesanz, S., Schöb, C. & Milla, R. Plant domestication disrupts biodiversity effects across major crop types. Ecol. Lett. 22, 1472–1482 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Finckh, M. R. et al. Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie 20, 813–837 (2000).

    Article 

    Google Scholar 

  • 22.

    Newton, A. C. Exploitation of diversity within crops—the key to disease tolerance? Front. Plant Sci. 7, 665 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Newton, A. C., Begg, G. S. & Swanston, J. S. Deployment of diversity for enhanced crop function. Ann. Appl. Biol. 154, 309–322 (2009).

    Article 

    Google Scholar 

  • 24.

    Frankel, O. H. Analytical yield investigations on New Zealand wheat: IV. Blending varieties of wheat. J. Agric. Sci. 29, 249–261 (1939).

    Article 

    Google Scholar 

  • 25.

    Kristoffersen, R., Jørgensen, L. N., Eriksen, L. B., Nielsen, G. C. & Kiær, L. P. Control of Septoria tritici blotch by winter wheat cultivar mixtures: meta-analysis of 19 years of cultivar trials. Field Crops Res. 249, 107696 (2020).

    Article 

    Google Scholar 

  • 26.

    Mundt, C. Use of multiline cultivars and cultivar mixtures for disease management. Annu. Rev. Phytopathol. 40, 381–410 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Wolfe, M. S. The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annu. Rev. Phytopathol. 23, 251–273 (1985).

    Article 

    Google Scholar 

  • 28.

    Finckh, M. R. Integration of breeding and technology into diversification strategies for disease control in modern agriculture. Eur. J. Plant Pathol. 121, 399–409 (2008).

    Article 

    Google Scholar 

  • 29.

    Reiss, E. R. & Drinkwater, L. E. Cultivar mixtures: a meta-analysis of the effect of intraspecific diversity on crop yield. Ecol. Appl. 28, 62–77 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 30.

    Tooker, J. F. & Frank, S. D. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. J. Appl. Ecol. 49, 974–985 (2012).

    Article 

    Google Scholar 

  • 31.

    McDonald, B. A., Allard, R. W. & Webster, R. K. Responses of two-, three-, and four-component barley mixtures to a variable pathogen population. Crop Sci. 28, 447–452 (1988).

    Article 

    Google Scholar 

  • 32.

    Zhan, J. & McDonald, B. A. Experimental measures of pathogen competition and relative fitness. Annu. Rev. Phytopathol. 51, 131–153 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Kiær, L. P., Skovgaard, I. M. & Østergård, H. Effects of inter-varietal diversity, biotic stresses and environmental productivity on grain yield of spring barley variety mixtures. Euphytica 185, 123–138 (2012).

    Article 

    Google Scholar 

  • 34.

    Creissen, H. E., Jorgensen, T. H. & Brown, J. K. M. Increased yield stability of field-grown winter barley (Hordeum vulgare L.) varietal mixtures through ecological processes. Crop Prot. 85, 1–8 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Borg, J. et al. Unfolding the potential of wheat cultivar mixtures: a meta-analysis perspective and identification of knowledge gaps. Field Crops Res. 221, 298–313 (2018).

    Article 

    Google Scholar 

  • 36.

    Kiær, L. P., Skovgaard, I. M. & Østergård, H. Grain yield increase in cereal variety mixtures: a meta-analysis of field trials. Field Crops Res. 114, 361–373 (2009).

    Article 

    Google Scholar 

  • 37.

    Barot, S. et al. Designing mixtures of varieties for multifunctional agriculture with the help of ecology. A review. Agron. Sustain. Dev. 37, 13 (2017).

    Article 

    Google Scholar 

  • 38.

    Chateil, C. et al. Crop genetic diversity benefits farmland biodiversity in cultivated fields. Agric. Ecosyst. Environ. 171, 25–32 (2013).

    Article 

    Google Scholar 

  • 39.

    Litrico, I. & Violle, C. Diversity in plant breeding: a new conceptual framework. Trends Plant Sci. 20, 604–613 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Van Der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Montazeaud, G. et al. Crop mixtures: does niche complementarity hold for belowground resources? An experimental test using rice genotypic pairs. Plant Soil 424, 87–202 (2018).

    Article 
    CAS 

    Google Scholar 

  • 42.

    Montazeaud, G. et al. Multifaceted functional diversity for multifaceted crop yield: towards ecological assembly rules for varietal mixtures. J. Appl. Ecol. 57, 2285–2295 (2020).

    Article 

    Google Scholar 

  • 43.

    Von Felten, S., Niklaus, P. A., Scherer-Lorenzen, M., Hector, A. & Buchmann, N. Do grassland plant communities profit from N partitioning by soil depth? Ecology 93, 2386–2396 (2012).

    Article 

    Google Scholar 

  • 44.

    Zhang, W. P. et al. Temporal dynamics of nutrient uptake by neighbouring plant species: evidence from intercropping. Funct. Ecol. 31, 469–479 (2017).

    Article 

    Google Scholar 

  • 45.

    Spehn, E. M. et al. The role of legumes as a component of biodiversity in a cross-European study of grassland biomass nitrogen. Oikos 98, 205–218 (2002).

    Article 

    Google Scholar 

  • 46.

    Griffiths, M. & York, L. M. Targeting root ion uptake kinetics to increase plant productivity and nutrient use efficiency. Plant Physiol. 182, 1854–1868 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Maron, J. L., Marler, M., Klironomos, J. N. & Cleveland, C. C. Soil fungal pathogens and the relationship between plant diversity and productivity. Ecol. Lett. 14, 36–41 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Mikaberidze, A., Mcdonald, B. A. & Bonhoeffer, S. Developing smarter host mixtures to control plant disease. Plant Pathol. 64, 996–1004 (2015).

    Article 

    Google Scholar 

  • 49.

    Wright, A. J., Wardle, D. A., Callaway, R. & Gaxiola, A. The overlooked role of facilitation in biodiversity experiments. Trends Ecol. Evol. 32, 383–390 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Petchey, O. L., Hector, A. & Gaston, K. J. How do different measures of functional diversity perform? Ecology 85, 847–857 (2004).

    Article 

    Google Scholar 

  • 51.

    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).

    Article 

    Google Scholar 

  • 52.

    Zhang, C., Postma, J. A., York, L. M. & Lynch, J. P. Root foraging elicits niche complementarity-dependent yield advantage in the ancient ‘three sisters’ (maize/bean/squash) polyculture. Ann. Bot. 110, 521–534 (2014).

    Google Scholar 

  • 53.

    Erktan, A., McCormack, M. L. & Roumet, C. Frontiers in root ecology: recent advances and future challenges. Plant Soil 424, 1–9 (2018).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 55.

    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 125–159 (2002).

    Article 

    Google Scholar 

  • 57.

    Morris, G. P. et al. Genotypic diversity effects on biomass production in native perennial bioenergy cropping systems. Glob. Change Biol. Bioenergy 8, 1000–1014 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Wuest, S. E. & Niklaus, P. A. A plant biodiversity effect resolved to a single chromosomal region. Nat. Ecol. Evol. 2, 1933–1939 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Chen, K., Wang, Y., Zhang, R., Zhang, H. & Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667–697 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Griffing, B. Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. Biol. Sci. 9, 463–493 (1956).

    Article 

    Google Scholar 

  • 61.

    Lopez, C. G. & Mundt, C. C. Using mixing ability analysis from two-way cultivar mixtures to predict the performance of cultivars in complex mixtures. Field Crops Res. 68, 121–132 (2000).

    Article 

    Google Scholar 

  • 62.

    Forst, E. et al. A generalized statistical framework to assess mixing ability from incomplete mixing designs using binary or higher order variety mixtures and application to wheat. Field Crops Res. 242, 107571 (2019).

    Article 

    Google Scholar 

  • 63.

    Harlan, H. V. & Martini, M. L. A composite hybrid mixture. Agron. J. 21, 487–490 (1929).

    Article 

    Google Scholar 

  • 64.

    Suneson, C. A. Evolutionary plant breeding. Crop Sci. 9, 119–121 (1969).

    Article 

    Google Scholar 

  • 65.

    Allard, R. W. & Adams, J. Populations studies in predominantly self-pollinating species. XIII. Intergenotypic competition and population structure in barley and wheat. Am. Nat. 103, 621–645 (1969).

    Article 

    Google Scholar 

  • 66.

    Allard, R. W. & Jain, S. K. Population studies in predominantly self-pollinated species. II. Analysis of quantitative genetic changes in a bulk-hybrid population of barley. Evolution 16, 90–101 (1962).

    Google Scholar 

  • 67.

    Döring, T. F., Knapp, S., Kovacs, G., Murphy, K. & Wolfe, M. S. Evolutionary plant breeding in cereals—into a new era. Sustainability 3, 1944–1971 (2011).

    Article 

    Google Scholar 

  • 68.

    Dawson, J. C. & Goldringer, I. in Organic Crop Breeding (eds Lammerts van Bueren, E. T. & Myers, J. R.) 77–98 (Wiley, 2011).

  • 69.

    Goldringer, I. et al. Agronomic evaluation of bread wheat varieties from participatory breeding: a combination of performance and robustness. Sustainability 12, 128 (2020).

    Article 

    Google Scholar 

  • 70.

    Andrew, I. K. S., Storkey, J. & Sparkes, D. L. A review of the potential for competitive cereal cultivars as a tool in integrated weed management. Weed Res. 55, 239–248 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Bertholdsson, N. O., Weedon, O., Brumlop, S. & Finckh, M. R. Evolutionary changes of weed competitive traits in winter wheat composite cross populations in organic and conventional farming systems. Eur. J. Agron. 79, 23–30 (2016).

    Article 

    Google Scholar 

  • 72.

    Weiner, J., Du, Y. L., Zhang, C., Qin, X. L. & Li, F. M. Evolutionary agroecology: individual fitness and population yield in wheat (Triticum aestivum). Ecology 98, 2261–2266 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 73.

    Weiner, J. Looking in the wrong direction for higher-yielding crop genotypes. Trends Plant Sci. 19, S1360–S1385 (2019).

    Google Scholar 

  • 74.

    Denison, R. F., Kiers, E. T. & West, S. A. Darwinian agriculture: When can humans find solutions beyond the reach of natural selection? Q. Rev. Biol. 78, 145–168 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 75.

    Donald, C. M. The breeding of crop ideotypes. Euphytica 17, 385–403 (1968).

    Article 

    Google Scholar 

  • 76.

    Donald, C. M. in Wheat Science—Today and Tomorrow (eds Evans, L. T. & Peacock, W. J.) 223–247 (Cambridge Univ. Press, 1981).

  • 77.

    Knapp, S. et al. Natural selection towards wild-type in composite cross populations of winter wheat. Front. Plant Sci. 10, 1757 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 78.

    Gersani, M., Brown, J. S., O’Brien, E. E., Maina, G. M. & Abramsky, Z. Tragedy of the commons as a result of root competition. J. Ecol. 89, 660–669 (2001).

    Article 

    Google Scholar 

  • 79.

    Rankin, D. J., Bargum, K. & Kokko, H. The tragedy of the commons in evolutionary biology. Trends Ecol. Evol. 22, 643–651 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 80.

    Zhang, D. Y., Sun, G. J. & Jiang, X. H. Donald’s ideotype and growth redundancy: a game theoretical analysis. Field Crops Res. 61, 179–187 (1999).

    Article 

    Google Scholar 

  • 81.

    Duvick, D. N., Smith, J. S. C. & Cooper, M. in Plant Breeding Reviews. Part 2. Long Term Selection: Crops, Animals and Bacteria Vol. 24 (ed. Janick, J.) 109–151 (Wiley, 2004); https://doi.org/10.1002/9780470650288.ch4

  • 82.

    Tian, J. et al. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 365, 658–664 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 83.

    Zhu, Y. H., Weiner, J., Yu, M. X. & Li, F. M. Evolutionary agroecology: trends in root architecture during wheat breeding. Evol. Appl. 12, 733–743 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 84.

    Tsunoda, S. A developmental aanlysis of yielding ability in varieties of field crops: II. The assimilation-system of plants as affected by the form, direction and arrangement of single leaves. Jpn. J. Breed. 9, 237–244 (1959).

    Article 

    Google Scholar 

  • 85.

    Jennings, P. R. Plant type as a rice breeding objective. Crop Sci. 4, 13–15 (1964).

    Article 

    Google Scholar 

  • 86.

    Zhu, L. & Zhang, D. Y. Donald’s ideotype and growth redundancy: a pot experimental test using an old and a modern spring wheat cultivar. PLoS ONE 8, e70006 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 87.

    Jennings, P. R. & De Jesus, J. J. Studies on competition in rice I. Competition in mixtures of varieties. Evolution 22, 119–124 (1968).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 88.

    Jennings, P. R. & Herrera, R. M. Studies on competition in rice II. Competition in segregating populations. Evolution 22, 332–336 (1968).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 89.

    Borlaug, N. E. Wheat breeding and its impact on world food supply. In Third International Wheat Genetics Symposium 1–36 (1968).

  • 90.

    Vogel, O. A., Craddock, J. C., Muir, C. E., Everson, E. H. & Rohde, C. R. Semidwarf growth habit in winter wheat improvement for the Pacific Northwest. Agron. J. 48, 76–78 (1956).

    Article 

    Google Scholar 

  • 91.

    Reynolds, M. P., Acevedo, E., Sayre, K. D. & Fischer, R. A. Yield potential in modern wheat varieties: its association with a less competitive ideotype. Field Crops Res. 37, 149–160 (1994).

    Article 

    Google Scholar 

  • 92.

    Murphy, G. P., Swanton, C. J., Van Acker, R. C. & Dudley, S. A. Kin recognition, multilevel selection and altruism in crop sustainability. J. Ecol. 105, 930–934 (2017).

    Article 

    Google Scholar 

  • 93.

    Ohtsuki, H., Hauert, C., Lieberman, E. & Nowak, M. A. A simple rule for the evolution of cooperation on graphs and social networks. Nature 441, 502–505 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 94.

    Nowak, M. A. Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 95.

    Maynard Smith, J. Group selection and kin selection. Nature 201, 1145–1147 (1964).

    Article 

    Google Scholar 

  • 96.

    Montazeaud, G. et al. Farming plant cooperation in crops. Proc. Biol. Sci. 287, 20191290 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 97.

    Brown, J. K. M. Durable resistance of crops to disease: a Darwinian perspective. Annu. Rev. Phytopathol. 53, 513–539 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 98.

    Laine, A. L., Burdon, J. J., Dodds, P. N. & Thrall, P. H. Spatial variation in disease resistance: from molecules to metapopulations. J. Ecol. 99, 96–112 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 99.

    Karasov, T. L., Shirsekar, G., Schwab, R. & Weigel, D. What natural variation can teach us about resistance durability. Curr. Opin. Plant Biol. 56, 89–98 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 100.

    Zhan, J., Thrall, P. H., Papaïx, J., Xie, L. & Burdon, J. J. Playing on a pathogen’s weakness: using evolution to guide sustainable plant disease control strategies. Annu. Rev. Phytopathol. 53, 19–43 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 101.

    Smithson, J. B. & Lenné, J. M. Varietal mixtures: a viable strategy for sustainable productivity in subsistence agriculture. Ann. Appl. Biol. 128, 127–158 (1996).

    Article 

    Google Scholar 

  • 102.

    Huang, C., Sun, Z., Wang, H., Luo, Y. & Ma, Z. Effects of wheat cultivar mixtures on stripe rust: a meta-analysis on field trials. Crop Prot. 33, 52–58 (2012).

    Article 

    Google Scholar 

  • 103.

    Zhu, Y. et al. Genetic diversity and disease control in rice. Nature 406, 718–722 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 104.

    Mundt, C. C. Durable resistance: a key to sustainable management of pathogens and pests. Infect. Genet. Evol. 27, 446–455 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 105.

    Finckh, M. R. Stripe rust, yield, and plant competition in wheat cultivar mixtures. Phytopathology 85, 905–913 (1992).

    Article 

    Google Scholar 

  • 106.

    McGrann, G. R. D. et al. A trade off between mlo resistance to powdery mildew and increased susceptibility of barley to a newly important disease, Ramularia leaf spot. J. Exp. Bot. 65, 1025–1037 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 107.

    Rimbaud, L., Papaïx, J., Barrett, L. G., Burdon, J. J. & Thrall, P. H. Mosaics, mixtures, rotations or pyramiding: What is the optimal strategy to deploy major gene resistance? Evol. Appl. 11, 1791–1810 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 108.

    Zeller, S. L., Kalinina, O., Flynn, D. F. B. & Schmid, B. Mixtures of genetically modified wheat lines outperform monocultures. Ecol. Appl. 22, 1817–1826 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 109.

    Kellerhals, M., Mouron, P., Graf, B., Bousset, L. & Gessler, C. Mischpflanzung von Apfelsorten: Einfluss auf krankheiten, schädlinge und wirtschaftlichkeit. Schweiz. Z. Obs. 13, 10–13 (2003).

    Google Scholar 

  • 110.

    Burdon, J. J., Barrett, L. G., Rebetzke, G. & Thrall, P. H. Guiding deployment of resistance in cereals using evolutionary principles. Evol. Appl. 7, 609–624 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 111.

    Mundt, C. C. Pyramiding for resistance durability: theory and practice. Phytopathology 108, 792–802 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 112.

    Newton, A. C., Johnson, S. N. & Gregory, P. J. Implications of climate change for diseases, crop yields and food security. Euphytica 179, 3–18 (2011).

    Article 

    Google Scholar 

  • 113.

    Knapp, S. & van der Heijden, M. G. A. A global meta-analysis of yield stability in organic and conservation agriculture. Nat. Commun. 9, 3632 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 114.

    Friedli, C. N., Abiven, S., Fossati, D. & Hund, A. Modern wheat semi-dwarfs root deep on demand: response of rooting depth to drought in a set of Swiss era wheats covering 100 years of breeding. Euphytica 215, 85 (2019).

    Article 
    CAS 

    Google Scholar 

  • 115.

    DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 13, 77–81 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 116.

    Tilman, D. & Downing, J. A. Biodiversity and stability in grasslands. Nature 367, 363–365 (1994).

    Article 

    Google Scholar 

  • 117.

    Schweiger, A. K. et al. Spectral niches reveal taxonomic identity and complementarity in plant communities. Preprint at bioRxiv https://doi.org/10.1101/2020.04.24.060483 (2020).

  • 118.

    Pianka, E. R. The structure of lizard communities. Annu. Rev. Ecol. Syst. 4, 53–74 (1973).

    Article 

    Google Scholar 

  • 119.

    MacArthur, R. H. Population ecology of some warblers of northeastern coniferous forests. Ecology 39, 599–619 (1958).

    Article 

    Google Scholar 

  • 120.

    Colwell, R. K. & Futuyma, D. J. On the measurement of niche breadth and overlap. Ecology 52, 567–576 (1971).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Beyond coronavirus: the virus discoveries transforming biology

    Genetic and phylogenetic analysis of dissimilatory iodate-reducing bacteria identifies potential niches across the world’s oceans