Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W. & Mortensen, D. A. Agriculture in 2050: recalibrating targets for sustainable intensification. Bioscience 67, 386–391 (2017).
Google Scholar
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).
Google Scholar
Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238 (2013).
Google Scholar
Weiner, J. Applying plant ecological knowledge to increase agricultural sustainability. J. Ecol. 105, 865–870 (2017).
Google Scholar
Sadras, V. et al. Making science more effective for agriculture. Adv. Agron. 163, 153–177 (2020).
Google Scholar
Kremen, C. Ecological intensification and diversification approaches to maintain biodiversity, ecosystem services and food production in a changing world. Emerg. Top. Life Sci. 4, 229–240 (2020).
Google Scholar
Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).
Google Scholar
Brooker, R. W. et al. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. N. Phytol. 206, 107–117 (2015).
Google Scholar
Bullock, D. G. Crop rotation. Crit. Rev. Plant Sci. 11, 309–326 (1992).
Google Scholar
Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).
Google Scholar
Hector, A. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127 (1999).
Google Scholar
Hector, A. et al. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 91, 2213–2220 (2010).
Google Scholar
Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).
Google Scholar
Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).
Google Scholar
Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).
Google Scholar
Prieto, I. et al. Complementary effects of species and genetic diversity on productivity and stability of sown grasslands. Nat. Plants 1, 15033 (2015).
Google Scholar
Blüthgen, N. et al. Land use imperils plant and animal community stability through changes in asynchrony rather than diversity. Nat. Commun. 7, 10697 (2016).
Google Scholar
Voss-Fels, K. P. et al. Breeding improves wheat productivity under contrasting agrochemical input levels. Nat. Plants 5, 706–714 (2019).
Google Scholar
Zuppinger-Dingley, D. et al. Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515, 108–111 (2014).
Google Scholar
Chacón-Labella, J., García Palacios, P., Matesanz, S., Schöb, C. & Milla, R. Plant domestication disrupts biodiversity effects across major crop types. Ecol. Lett. 22, 1472–1482 (2019).
Google Scholar
Finckh, M. R. et al. Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie 20, 813–837 (2000).
Google Scholar
Newton, A. C. Exploitation of diversity within crops—the key to disease tolerance? Front. Plant Sci. 7, 665 (2016).
Google Scholar
Newton, A. C., Begg, G. S. & Swanston, J. S. Deployment of diversity for enhanced crop function. Ann. Appl. Biol. 154, 309–322 (2009).
Google Scholar
Frankel, O. H. Analytical yield investigations on New Zealand wheat: IV. Blending varieties of wheat. J. Agric. Sci. 29, 249–261 (1939).
Google Scholar
Kristoffersen, R., Jørgensen, L. N., Eriksen, L. B., Nielsen, G. C. & Kiær, L. P. Control of Septoria tritici blotch by winter wheat cultivar mixtures: meta-analysis of 19 years of cultivar trials. Field Crops Res. 249, 107696 (2020).
Google Scholar
Mundt, C. Use of multiline cultivars and cultivar mixtures for disease management. Annu. Rev. Phytopathol. 40, 381–410 (2002).
Google Scholar
Wolfe, M. S. The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annu. Rev. Phytopathol. 23, 251–273 (1985).
Google Scholar
Finckh, M. R. Integration of breeding and technology into diversification strategies for disease control in modern agriculture. Eur. J. Plant Pathol. 121, 399–409 (2008).
Google Scholar
Reiss, E. R. & Drinkwater, L. E. Cultivar mixtures: a meta-analysis of the effect of intraspecific diversity on crop yield. Ecol. Appl. 28, 62–77 (2018).
Google Scholar
Tooker, J. F. & Frank, S. D. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. J. Appl. Ecol. 49, 974–985 (2012).
Google Scholar
McDonald, B. A., Allard, R. W. & Webster, R. K. Responses of two-, three-, and four-component barley mixtures to a variable pathogen population. Crop Sci. 28, 447–452 (1988).
Google Scholar
Zhan, J. & McDonald, B. A. Experimental measures of pathogen competition and relative fitness. Annu. Rev. Phytopathol. 51, 131–153 (2013).
Google Scholar
Kiær, L. P., Skovgaard, I. M. & Østergård, H. Effects of inter-varietal diversity, biotic stresses and environmental productivity on grain yield of spring barley variety mixtures. Euphytica 185, 123–138 (2012).
Google Scholar
Creissen, H. E., Jorgensen, T. H. & Brown, J. K. M. Increased yield stability of field-grown winter barley (Hordeum vulgare L.) varietal mixtures through ecological processes. Crop Prot. 85, 1–8 (2016).
Google Scholar
Borg, J. et al. Unfolding the potential of wheat cultivar mixtures: a meta-analysis perspective and identification of knowledge gaps. Field Crops Res. 221, 298–313 (2018).
Google Scholar
Kiær, L. P., Skovgaard, I. M. & Østergård, H. Grain yield increase in cereal variety mixtures: a meta-analysis of field trials. Field Crops Res. 114, 361–373 (2009).
Google Scholar
Barot, S. et al. Designing mixtures of varieties for multifunctional agriculture with the help of ecology. A review. Agron. Sustain. Dev. 37, 13 (2017).
Google Scholar
Chateil, C. et al. Crop genetic diversity benefits farmland biodiversity in cultivated fields. Agric. Ecosyst. Environ. 171, 25–32 (2013).
Google Scholar
Litrico, I. & Violle, C. Diversity in plant breeding: a new conceptual framework. Trends Plant Sci. 20, 604–613 (2015).
Google Scholar
Van Der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).
Google Scholar
Montazeaud, G. et al. Crop mixtures: does niche complementarity hold for belowground resources? An experimental test using rice genotypic pairs. Plant Soil 424, 87–202 (2018).
Google Scholar
Montazeaud, G. et al. Multifaceted functional diversity for multifaceted crop yield: towards ecological assembly rules for varietal mixtures. J. Appl. Ecol. 57, 2285–2295 (2020).
Google Scholar
Von Felten, S., Niklaus, P. A., Scherer-Lorenzen, M., Hector, A. & Buchmann, N. Do grassland plant communities profit from N partitioning by soil depth? Ecology 93, 2386–2396 (2012).
Google Scholar
Zhang, W. P. et al. Temporal dynamics of nutrient uptake by neighbouring plant species: evidence from intercropping. Funct. Ecol. 31, 469–479 (2017).
Google Scholar
Spehn, E. M. et al. The role of legumes as a component of biodiversity in a cross-European study of grassland biomass nitrogen. Oikos 98, 205–218 (2002).
Google Scholar
Griffiths, M. & York, L. M. Targeting root ion uptake kinetics to increase plant productivity and nutrient use efficiency. Plant Physiol. 182, 1854–1868 (2020).
Google Scholar
Maron, J. L., Marler, M., Klironomos, J. N. & Cleveland, C. C. Soil fungal pathogens and the relationship between plant diversity and productivity. Ecol. Lett. 14, 36–41 (2011).
Google Scholar
Mikaberidze, A., Mcdonald, B. A. & Bonhoeffer, S. Developing smarter host mixtures to control plant disease. Plant Pathol. 64, 996–1004 (2015).
Google Scholar
Wright, A. J., Wardle, D. A., Callaway, R. & Gaxiola, A. The overlooked role of facilitation in biodiversity experiments. Trends Ecol. Evol. 32, 383–390 (2017).
Google Scholar
Petchey, O. L., Hector, A. & Gaston, K. J. How do different measures of functional diversity perform? Ecology 85, 847–857 (2004).
Google Scholar
Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).
Google Scholar
Zhang, C., Postma, J. A., York, L. M. & Lynch, J. P. Root foraging elicits niche complementarity-dependent yield advantage in the ancient ‘three sisters’ (maize/bean/squash) polyculture. Ann. Bot. 110, 521–534 (2014).
Erktan, A., McCormack, M. L. & Roumet, C. Frontiers in root ecology: recent advances and future challenges. Plant Soil 424, 1–9 (2018).
Google Scholar
Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2015).
Google Scholar
Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).
Google Scholar
Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 125–159 (2002).
Google Scholar
Morris, G. P. et al. Genotypic diversity effects on biomass production in native perennial bioenergy cropping systems. Glob. Change Biol. Bioenergy 8, 1000–1014 (2016).
Google Scholar
Wuest, S. E. & Niklaus, P. A. A plant biodiversity effect resolved to a single chromosomal region. Nat. Ecol. Evol. 2, 1933–1939 (2018).
Google Scholar
Chen, K., Wang, Y., Zhang, R., Zhang, H. & Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667–697 (2019).
Google Scholar
Griffing, B. Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. Biol. Sci. 9, 463–493 (1956).
Google Scholar
Lopez, C. G. & Mundt, C. C. Using mixing ability analysis from two-way cultivar mixtures to predict the performance of cultivars in complex mixtures. Field Crops Res. 68, 121–132 (2000).
Google Scholar
Forst, E. et al. A generalized statistical framework to assess mixing ability from incomplete mixing designs using binary or higher order variety mixtures and application to wheat. Field Crops Res. 242, 107571 (2019).
Google Scholar
Harlan, H. V. & Martini, M. L. A composite hybrid mixture. Agron. J. 21, 487–490 (1929).
Google Scholar
Suneson, C. A. Evolutionary plant breeding. Crop Sci. 9, 119–121 (1969).
Google Scholar
Allard, R. W. & Adams, J. Populations studies in predominantly self-pollinating species. XIII. Intergenotypic competition and population structure in barley and wheat. Am. Nat. 103, 621–645 (1969).
Google Scholar
Allard, R. W. & Jain, S. K. Population studies in predominantly self-pollinated species. II. Analysis of quantitative genetic changes in a bulk-hybrid population of barley. Evolution 16, 90–101 (1962).
Döring, T. F., Knapp, S., Kovacs, G., Murphy, K. & Wolfe, M. S. Evolutionary plant breeding in cereals—into a new era. Sustainability 3, 1944–1971 (2011).
Google Scholar
Dawson, J. C. & Goldringer, I. in Organic Crop Breeding (eds Lammerts van Bueren, E. T. & Myers, J. R.) 77–98 (Wiley, 2011).
Goldringer, I. et al. Agronomic evaluation of bread wheat varieties from participatory breeding: a combination of performance and robustness. Sustainability 12, 128 (2020).
Google Scholar
Andrew, I. K. S., Storkey, J. & Sparkes, D. L. A review of the potential for competitive cereal cultivars as a tool in integrated weed management. Weed Res. 55, 239–248 (2015).
Google Scholar
Bertholdsson, N. O., Weedon, O., Brumlop, S. & Finckh, M. R. Evolutionary changes of weed competitive traits in winter wheat composite cross populations in organic and conventional farming systems. Eur. J. Agron. 79, 23–30 (2016).
Google Scholar
Weiner, J., Du, Y. L., Zhang, C., Qin, X. L. & Li, F. M. Evolutionary agroecology: individual fitness and population yield in wheat (Triticum aestivum). Ecology 98, 2261–2266 (2017).
Google Scholar
Weiner, J. Looking in the wrong direction for higher-yielding crop genotypes. Trends Plant Sci. 19, S1360–S1385 (2019).
Denison, R. F., Kiers, E. T. & West, S. A. Darwinian agriculture: When can humans find solutions beyond the reach of natural selection? Q. Rev. Biol. 78, 145–168 (2003).
Google Scholar
Donald, C. M. The breeding of crop ideotypes. Euphytica 17, 385–403 (1968).
Google Scholar
Donald, C. M. in Wheat Science—Today and Tomorrow (eds Evans, L. T. & Peacock, W. J.) 223–247 (Cambridge Univ. Press, 1981).
Knapp, S. et al. Natural selection towards wild-type in composite cross populations of winter wheat. Front. Plant Sci. 10, 1757 (2020).
Google Scholar
Gersani, M., Brown, J. S., O’Brien, E. E., Maina, G. M. & Abramsky, Z. Tragedy of the commons as a result of root competition. J. Ecol. 89, 660–669 (2001).
Google Scholar
Rankin, D. J., Bargum, K. & Kokko, H. The tragedy of the commons in evolutionary biology. Trends Ecol. Evol. 22, 643–651 (2007).
Google Scholar
Zhang, D. Y., Sun, G. J. & Jiang, X. H. Donald’s ideotype and growth redundancy: a game theoretical analysis. Field Crops Res. 61, 179–187 (1999).
Google Scholar
Duvick, D. N., Smith, J. S. C. & Cooper, M. in Plant Breeding Reviews. Part 2. Long Term Selection: Crops, Animals and Bacteria Vol. 24 (ed. Janick, J.) 109–151 (Wiley, 2004); https://doi.org/10.1002/9780470650288.ch4
Tian, J. et al. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 365, 658–664 (2019).
Google Scholar
Zhu, Y. H., Weiner, J., Yu, M. X. & Li, F. M. Evolutionary agroecology: trends in root architecture during wheat breeding. Evol. Appl. 12, 733–743 (2019).
Google Scholar
Tsunoda, S. A developmental aanlysis of yielding ability in varieties of field crops: II. The assimilation-system of plants as affected by the form, direction and arrangement of single leaves. Jpn. J. Breed. 9, 237–244 (1959).
Google Scholar
Jennings, P. R. Plant type as a rice breeding objective. Crop Sci. 4, 13–15 (1964).
Google Scholar
Zhu, L. & Zhang, D. Y. Donald’s ideotype and growth redundancy: a pot experimental test using an old and a modern spring wheat cultivar. PLoS ONE 8, e70006 (2013).
Google Scholar
Jennings, P. R. & De Jesus, J. J. Studies on competition in rice I. Competition in mixtures of varieties. Evolution 22, 119–124 (1968).
Google Scholar
Jennings, P. R. & Herrera, R. M. Studies on competition in rice II. Competition in segregating populations. Evolution 22, 332–336 (1968).
Google Scholar
Borlaug, N. E. Wheat breeding and its impact on world food supply. In Third International Wheat Genetics Symposium 1–36 (1968).
Vogel, O. A., Craddock, J. C., Muir, C. E., Everson, E. H. & Rohde, C. R. Semidwarf growth habit in winter wheat improvement for the Pacific Northwest. Agron. J. 48, 76–78 (1956).
Google Scholar
Reynolds, M. P., Acevedo, E., Sayre, K. D. & Fischer, R. A. Yield potential in modern wheat varieties: its association with a less competitive ideotype. Field Crops Res. 37, 149–160 (1994).
Google Scholar
Murphy, G. P., Swanton, C. J., Van Acker, R. C. & Dudley, S. A. Kin recognition, multilevel selection and altruism in crop sustainability. J. Ecol. 105, 930–934 (2017).
Google Scholar
Ohtsuki, H., Hauert, C., Lieberman, E. & Nowak, M. A. A simple rule for the evolution of cooperation on graphs and social networks. Nature 441, 502–505 (2006).
Google Scholar
Nowak, M. A. Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006).
Google Scholar
Maynard Smith, J. Group selection and kin selection. Nature 201, 1145–1147 (1964).
Google Scholar
Montazeaud, G. et al. Farming plant cooperation in crops. Proc. Biol. Sci. 287, 20191290 (2020).
Google Scholar
Brown, J. K. M. Durable resistance of crops to disease: a Darwinian perspective. Annu. Rev. Phytopathol. 53, 513–539 (2015).
Google Scholar
Laine, A. L., Burdon, J. J., Dodds, P. N. & Thrall, P. H. Spatial variation in disease resistance: from molecules to metapopulations. J. Ecol. 99, 96–112 (2011).
Google Scholar
Karasov, T. L., Shirsekar, G., Schwab, R. & Weigel, D. What natural variation can teach us about resistance durability. Curr. Opin. Plant Biol. 56, 89–98 (2020).
Google Scholar
Zhan, J., Thrall, P. H., Papaïx, J., Xie, L. & Burdon, J. J. Playing on a pathogen’s weakness: using evolution to guide sustainable plant disease control strategies. Annu. Rev. Phytopathol. 53, 19–43 (2015).
Google Scholar
Smithson, J. B. & Lenné, J. M. Varietal mixtures: a viable strategy for sustainable productivity in subsistence agriculture. Ann. Appl. Biol. 128, 127–158 (1996).
Google Scholar
Huang, C., Sun, Z., Wang, H., Luo, Y. & Ma, Z. Effects of wheat cultivar mixtures on stripe rust: a meta-analysis on field trials. Crop Prot. 33, 52–58 (2012).
Google Scholar
Zhu, Y. et al. Genetic diversity and disease control in rice. Nature 406, 718–722 (2000).
Google Scholar
Mundt, C. C. Durable resistance: a key to sustainable management of pathogens and pests. Infect. Genet. Evol. 27, 446–455 (2014).
Google Scholar
Finckh, M. R. Stripe rust, yield, and plant competition in wheat cultivar mixtures. Phytopathology 85, 905–913 (1992).
Google Scholar
McGrann, G. R. D. et al. A trade off between mlo resistance to powdery mildew and increased susceptibility of barley to a newly important disease, Ramularia leaf spot. J. Exp. Bot. 65, 1025–1037 (2014).
Google Scholar
Rimbaud, L., Papaïx, J., Barrett, L. G., Burdon, J. J. & Thrall, P. H. Mosaics, mixtures, rotations or pyramiding: What is the optimal strategy to deploy major gene resistance? Evol. Appl. 11, 1791–1810 (2018).
Google Scholar
Zeller, S. L., Kalinina, O., Flynn, D. F. B. & Schmid, B. Mixtures of genetically modified wheat lines outperform monocultures. Ecol. Appl. 22, 1817–1826 (2012).
Google Scholar
Kellerhals, M., Mouron, P., Graf, B., Bousset, L. & Gessler, C. Mischpflanzung von Apfelsorten: Einfluss auf krankheiten, schädlinge und wirtschaftlichkeit. Schweiz. Z. Obs. 13, 10–13 (2003).
Burdon, J. J., Barrett, L. G., Rebetzke, G. & Thrall, P. H. Guiding deployment of resistance in cereals using evolutionary principles. Evol. Appl. 7, 609–624 (2014).
Google Scholar
Mundt, C. C. Pyramiding for resistance durability: theory and practice. Phytopathology 108, 792–802 (2018).
Google Scholar
Newton, A. C., Johnson, S. N. & Gregory, P. J. Implications of climate change for diseases, crop yields and food security. Euphytica 179, 3–18 (2011).
Google Scholar
Knapp, S. & van der Heijden, M. G. A. A global meta-analysis of yield stability in organic and conservation agriculture. Nat. Commun. 9, 3632 (2018).
Google Scholar
Friedli, C. N., Abiven, S., Fossati, D. & Hund, A. Modern wheat semi-dwarfs root deep on demand: response of rooting depth to drought in a set of Swiss era wheats covering 100 years of breeding. Euphytica 215, 85 (2019).
Google Scholar
DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 13, 77–81 (1998).
Google Scholar
Tilman, D. & Downing, J. A. Biodiversity and stability in grasslands. Nature 367, 363–365 (1994).
Google Scholar
Schweiger, A. K. et al. Spectral niches reveal taxonomic identity and complementarity in plant communities. Preprint at bioRxiv https://doi.org/10.1101/2020.04.24.060483 (2020).
Pianka, E. R. The structure of lizard communities. Annu. Rev. Ecol. Syst. 4, 53–74 (1973).
Google Scholar
MacArthur, R. H. Population ecology of some warblers of northeastern coniferous forests. Ecology 39, 599–619 (1958).
Google Scholar
Colwell, R. K. & Futuyma, D. J. On the measurement of niche breadth and overlap. Ecology 52, 567–576 (1971).
Google Scholar
Source: Ecology - nature.com