Darwin, C. The Descent of Man, and Selection in Relation to Sex (Jon Murray, 1871).
Google Scholar
Andersson, M. Sexual Selection (Princeton University Press, 1994).
Google Scholar
McGraw, K. J. & Ardia, D. R. Carotenoids, immunocompetence, and the information content of sexual colors: An experimental test. Am. Nat. 162, 704–712 (2003).
Google Scholar
Clutton-Brock, T. Sexual selection in females. Anim. Behav. 77, 3–11 (2009).
Google Scholar
Amundsen, T. Why are female birds ornamented?. TREE 15, 149–155 (2000).
Google Scholar
Coyne, J. A., Kay, E. H. & Pruett-Jones, S. The genetic basis of sexual dimorphism in birds. Evolution 62, 214–219 (2008).
Google Scholar
Gazda, M. et al. A genetic mechanism for sexual dichromatism in birds. Science 368, 1270–1274 (2020).
Google Scholar
Kraaijeveld, K. Genetic architecture of novel ornamental traits and the establishment of sexual dimorphism: Insights from domestic birds. J. Ornithol. 160, 861–868 (2019).
Google Scholar
Kimball, R. T. & Ligon, J. D. Evolution of avian plumage dichromatism from a proximate perspective. Am. Nat. 154, 182–193 (1999).
Google Scholar
West-Eberhard, M. J. Sexual selection, social competition, and speciation. Q. Rev. Biol. 58, 155–183 (1983).
Google Scholar
Lyon, B. E. & Montgomerie, R. Sexual selection is a form of social selection. Philos. Trans. R. Soc. B 367, 2266–2273 (2012).
Google Scholar
Faivre, B., Grégoire, A., Préault, M., Cézilly, F. & Sorci, G. Immune activation rapidly mirrored in a secondary sexual trait. Science 300, 103 (2003).
Google Scholar
Gautier, P. et al. The presence of females modulates the expression of a carotenoid-based sexual signal. Behav. Ecol. Sociobiol. 62, 1159–1166 (2008).
Google Scholar
Hill, G. E., Hood, W. R. & Huggins, K. A multifactorial test of the effects of carotenoid access, food intake and parasite load on the production of ornamental feathers and bill coloration in American goldfinches. J. Exp. Biol. 212, 1225–1233 (2009).
Google Scholar
Rosenthal, M. F., Murphy, T. G., Darling, N. & Tarvin, K. A. Ornamental bill color rapidly signals changing condition. J. Avian Biol. 43, 553–564 (2012).
Google Scholar
Eraud, C. et al. Environmental stress affects the expression of a carotenoid-based sexual trait in male zebra finches. J. Exp. Biol. 210, 3571–3578 (2007).
Google Scholar
Kelly, R. J., Murphy, T. G., Tarvin, K. A. & Burness, G. Carotenoid-based ornaments of female and male American goldfinches (Spinus tristis) show sex-specific correlations with immune function and metabolic rate. Physiol. Biochem. Zool. 85, 348–363 (2012).
Google Scholar
Funghi, C., Trigo, S., Gomes, A. C. R., Soares, M. C. & Cardoso, G. C. Release from ecological constraint erases sex difference in social ornamentation. Behav. Ecol. Sociobiol. 72, 67 (2018).
Google Scholar
DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. TREE 13, 77–81 (1998).
Google Scholar
West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford University Press, 2003).
Google Scholar
Weaver, R. J., Santos, E. S. A., Tucker, A. M., Wilson, A. E. & Hill, G. E. Carotenoid metabolism strengthens the link between feather coloration and individual quality. Nat. Commun. 9, 73 (2018).
Google Scholar
von Schantz, T., Bensch, S., Grahn, M., Hasselquist, D. & Wittzell, H. Good genes, oxidative stress and condition-dependent sexual signals. Proc. Biol. Sci. 266, 1–12 (1999).
Google Scholar
Møller, A. P. et al. Carotenoid-dependent signals: Indicators of foraging efficiency, immunocompetence or detoxification ability?. Avian Poult. Biol. Rev. 11, 137–159 (2000).
Garratt, M. & Brooks, R. C. Oxidative stress and condition-dependent sexual signals: More than just seeing red. Proc. Biol. Sci. 279, 3121–3130 (2012).
Google Scholar
Simons, M. J. P., Cohen, A. A. & Verhulst, S. What does carotenoid-dependent coloration tell? Plasma carotenoid level signals immunocompetence and oxidative stress state in birds-a meta-analysis. PLoS One 7, e43088 (2012).
Google Scholar
Hõrak, P., Ots, I., Vellau, H., Spottiswoode, C. & Møller, A. P. Carotenoid-based plumage coloration reflects hemoparasite infection and local survival in breeding great tits. Oecologia 126, 166–173 (2001).
Google Scholar
Clement, P., Harris, A. & Davies, J. Finches and Sparrows: An Identification Guide (Princeton University Press, 1993).
Cardoso, G. C., Batalha, H. R., Reis, S. & Lopes, R. J. Increasing sexual ornamentation during a biological invasion. Behav. Ecol. 25, 916–923 (2014).
Google Scholar
Cardoso, G. C. et al. Similar preferences for ornamentation in opposite- and same-sex choice experiments. J. Evol. Biol. 27, 2798–2806 (2014).
Google Scholar
Marques, C. I. J., Batalha, H. R. & Cardoso, G. C. Signalling with a cryptic trait: The regularity of barred plumage in common waxbills. R. Soc. Open. Sci. 3, 160195 (2016).
Google Scholar
Funghi, C., Leitão, A. V., Ferreira, A. C., Mota, P. G. & Cardoso, G. C. Social dominance in a gregarious bird is related to body size but not to standard personality assays. Ethology 121, 84–93 (2015).
Google Scholar
Navara, K. J. & Hill, G. E. Dietary carotenoid pigments and immune function in a songbird with extensive carotenoid-based plumage coloration. Behav. Ecol. 14, 909–916 (2003).
Google Scholar
McGraw, K. J. & Schuetz, J. G. The evolution of carotenoid coloration in estrildid finches: A biochemical analysis. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 139, 45–51 (2004).
Google Scholar
Karu, U., Saks, L. & Hõrak, P. Carotenoid-based plumage coloration is not affected by vitamin E supplementation in male greenfinches. Ecol. Res. 23, 931–935 (2008).
Google Scholar
Pérez, C., Lores, M. & Velando, A. Availability of nonpigmentary antioxidant affects red coloration in gulls. Behav. Ecol. 19, 967–973 (2008).
Google Scholar
Hartley, R. C. & Kennedy, M. W. Are carotenoids a red herring in sexual display?. TREE 19, 353–354 (2004).
Google Scholar
Alonso-Alvarez, C. et al. An experimental test of the dose-dependent effect of carotenoids and immune activation on sexual signals and antioxidant activity. Am. Nat. 164, 651–659 (2004).
Google Scholar
Jouventin, P., McGraw, K. J., Morel, M. & Célerier, A. Dietary carotenoid supplementation affects orange beak but not foot coloration in gentoo penguins Pygoscelis papua. Waterbirds 30, 573–578 (2007).
Google Scholar
Saino, N. et al. Better red than dead: Carotenoid-based mouth coloration reveals infection in barn swallow nestlings. Proc. Biol. Sci. 267, 57–61 (2000).
Google Scholar
Thorogood, R., Kilner, R. M., Karadaş, F. & Ewen, J. G. Spectral mouth color of nestlings changes with carotenoid availability. Funct. Ecol. 22, 1044–1051 (2008).
Google Scholar
Koch, R., Wilson, A. & Hill, G. The importance of carotenoid dose in supplementation studies with songbirds. Physiol. Biochem. Zool. 89, 61–71 (2015).
Google Scholar
Hill, G. E. Proximate basis of variation in carotenoid pigmentation in male House Finches. Auk 109, 1–12 (1992).
Google Scholar
Biard, C., Surai, P. F. & Møller, A. P. Carotenoid availability in diet and phenotype of blue and great tit nestlings. J. Exp. Biol. 209, 1004–1015 (2006).
Google Scholar
Giraudeau, M., Sweazea, K., Butler, M. W. & McGraw, K. J. Effects of carotenoid and vitamin E supplementation on oxidative stress and plumage coloration in house finches (Haemorhous mexicanus). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 166, 406–413 (2013).
Google Scholar
Goodwin, T. W. Distribution of carotenoids. Method Enzymol. 213, 167–172 (1992).
Google Scholar
Hill, G. E. Female house finches prefer colourful males: Sexual selection for a condition-dependent trait. Anim. Behav. 40, 563–572 (1990).
Google Scholar
Olson, V. A. & Owens, I. P. F. Costly sexual signals: Are carotenoids rare, risky or required?. TREE 13, 510–514 (1998).
Google Scholar
Koch, R. E. & Hill, G. E. Do carotenoid-based ornaments entail resource trade-offs? An evaluation of theory and data. Funct. Ecol. 32, 1908–1920 (2018).
Google Scholar
Krinsky, N. I. Carotenoids as antioxidants. Nutrition 17, 815–817 (2001).
Google Scholar
El-Agamey, A. et al. Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch. Biochem. Biophys. 430, 37–48 (2004).
Google Scholar
Costantini, D. & Møller, A. P. Carotenoids are minor antioxidants for birds. Funct. Ecol. 22, 367–370 (2007).
Google Scholar
Leclaire, S. et al. Carotenoids increase immunity and sex specifically affect color and redox homeostasis in a monochromatic seabird. Behav. Ecol. Sociobiol. 69, 1097–1111 (2015).
Google Scholar
Benito, M., González-Solís, J. & Becker, P. H. Carotenoid supplementation and sex-specific trade-offs between colouration and condition in common tern chicks. J. Comp. Physiol. B 181, 539–549 (2011).
Google Scholar
Surai, P. F. Natural Antioxidants in Avian Nutrition and Reproduction (Nottingham University Press, 2002).
Bertrand, S., Faivre, B. & Sorci, G. Do carotenoid-based sexual traits signal the availability of non-pigmentary antioxidants?. J. Exp. Biol. 209, 4414–4419 (2006).
Google Scholar
Marri, V. & Richner, H. Differential effects of vitamins E and C and carotenoids on growth, resistance to oxidative stress, fledging success and plumage colouration in wild great tits. J. Exp. Biol. 217, 1478–1484 (2014).
Google Scholar
Kopena, R., López, P. & Martín, J. Relative contribution of dietary carotenoids and vitamin E to visual and chemical sexual signals of male Iberian green lizards: An experimental test. Behav. Ecol. Sociobiol. 68, 571–581 (2014).
Google Scholar
Pike, T. W., Blount, J. D., Lindström, J. & Metcalfe, N. B. Availability of non-carotenoid antioxidants affects the expression of a carotenoid-based sexual ornament. Biol. Lett. 3, 353–356 (2007).
Google Scholar
Stiels, D., Schidelko, K., Engler, J. & Rödder, D. Predicting the potential distribution of the invasive Common Waxbill Estrilda astrild (Passeriformes: Estrildidae). J. Ornithol. 152, 769–780 (2011).
Google Scholar
Beltrão, P. et al. European breeding phenology of the common waxbill, a sub-Saharan opportunistic breeder. Acta Ethol. https://doi.org/10.1007/s10211-021-00376-9 (2021).
Google Scholar
Pan, J. Q., Tan, X., Li, J. C., Sun, W. D. & Wang, X. L. Effects of early feed restriction and cold temperature on lipid peroxidation, pulmonary vascular remodelling and ascites morbidity in broilers under normal and cold temperature. Br. Poultry Sci. 46, 374–381 (2005).
Google Scholar
Zhang, Z. W. et al. Effects of cold stress on nitric oxide in duodenum of chicks. Poultry Sci. 90, 1555–1561 (2011).
Google Scholar
Beaulieu, M., Haas, A. & Schaefer, M. H. Self-supplementation and effects of dietary antioxidants during acute thermal stress. J. Exp. Biol. 217, 370–375 (2013).
Google Scholar
Stier, A., Massemin, S. & Criscuolo, F. Chronic mitochondrial uncoupling treatment prevents acute cold-induced oxidative stress in birds. J. Comp. Physiol. B 184, 1021–1029 (2014).
Google Scholar
Beamonte-Barrientos, R. & Verhulst, S. Plasma reactive oxygen metabolites and non-enzymatic antioxidant capacity are not affected by an acute increase of metabolic rate in zebra finches. J. Comp. Physiol. B 183, 675–683 (2013).
Google Scholar
Moreno, J., Cantarero, A., Plaza, M. & López-Arrabé, J. Phenotypic plasticity in breeding plumage signals in both sexes of a migratory bird: Responses to breeding conditions. J. Avian Biol. 50, e01855 (2019).
Google Scholar
del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the Birds of the World, Vol. 15: Weavers to New World Warblers (Lynx Edicions, 2010).
Larcombe, S. D., Mullen, W., Alexander, L. & Arnold, K. E. Dietary antioxidants, lipid peroxidation and plumage colouration in nestling blue tits Cyanistes caeruleus. Naturwissenschaften 97, 903–913 (2010).
Google Scholar
Hudon, J. Showiness, carotenoids, and captivity: A comment on Hill (1992). Auk 111, 218–221 (1994).
Google Scholar
Dykes, L. & Rooney, L. W. Sorghum and millet phenols and antioxidants. J. Cereal Sci. 44, 236–251 (2006).
Google Scholar
Cardoso, G. C. & Gomes, A. C. R. Using reflectance ratios to study animal coloration. Evol. Biol. 42, 387–394 (2015).
Google Scholar
Montgomerie, R. Analyzing colors. Analyzing colors. In Bird Coloration, Vol. 1. Mechanisms and Measurements (eds Hill, G. E. & McGraw, K. J.) 90–147 (Harvard University Press, 2006).
Source: Ecology - nature.com