in

Ecological plasticity to ions concentration determines genetic response and dominance of Anopheles coluzzii larvae in urban coastal habitats of Central Africa

  • 1.

    Chin, A. Urban transformation of river landscapes in a global context. Geomorphology 79, 460–487 (2006).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Thomas, W. L. Man’s role in changing the face of the earth. (The University of Chicago, 1956).

  • 3.

    Johnson, M. T. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 4.

    Dubois, J. & Cheptou, P.-O. Effects of fragmentation on plant adaptation to urban environments. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160038 (2017).

    Article 

    Google Scholar 

  • 5.

    Cavia, R., Cueto, G. R. & Suárez, O. V. Changes in rodent communities according to the landscape structure in an urban ecosystem. Landsc. Urban Plan. 90, 11–19 (2009).

    Article 

    Google Scholar 

  • 6.

    Jackson, J. A. Ivory-billed Woodpecker (Campephilus principalis): Hope, and the interfaces of science, conservation, and politics. Auk 123, 1–15 (2006).

    Article 

    Google Scholar 

  • 7.

    McIntyre, N. E. Ecology of urban arthropods: a review and a call to action. Ann. Entomol. Soc. Am. 93, 825–835 (2000).

    Article 

    Google Scholar 

  • 8.

    Crispo, E., Moore, J. S., Lee-Yaw, J. A., Gray, S. M. & Haller, B. C. Broken barriers: Human-induced changes to gene flow and introgression in animals: An examination of the ways in which humans increase genetic exchange among populations and species and the consequences for biodiversity. BioEssays 33, 508–518 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 9.

    Triteeraprapab, S. et al. Transmission of the nocturnal periodic strain of Wuchereria bancrofti by Culex quinquefasciatus: establishing the potential for urban filariasis in Thailand. Epidemiol. Infect. 125, 207–212 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Carrieri, M., Bacchi, M., Bellini, R. & Maini, S. On the competition occurring between Aedes albopictus and Culex pipiens (Diptera: Culicidae) in Italy. Environ. Entomol. 32, 1313–1321 (2003).

    Article 

    Google Scholar 

  • 11.

    Doby, J. & Mouchet, J. Écologie larvaire de quelques espèces de Culicidés dans la région de Yaoundé (Sud-Cameroun). Bulletin de la Société de Pathologie Exotique 50, 945–957 (1957).

    CAS 

    Google Scholar 

  • 12.

    Delatte, H. et al. Aedes albopictus, vecteur des virus du chikungunya et de la dengue à la Réunion: biologie et contrôle. Parasite 15, 3–13 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Vazeille, M., Moutailler, S., Pages, F., Jarjaval, F. & Failloux, A. B. Introduction of Aedes albopictus in Gabon: what consequences for dengue and chikungunya transmission?. Tropical Med. Int. Health 13, 1176–1179 (2008).

    Article 

    Google Scholar 

  • 14.

    United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). (New York, United Nations, 2019).

  • 15.

    Trape, J. F.  L’impact de l’urbanisation sur le paludisme en Afrique centrale. Doctoral dissertation, Université Paris 11 (1986).

  • 16.

    Robert, V. et al. Malaria transmission in urban sub-Saharan Africa. Am. J. Trop. Med. Hyg. 68, 169–176 (2003).

    PubMed 
    Article 

    Google Scholar 

  • 17.

    Hay, S. I., Guerra, C. A., Tatem, A. J., Noor, A. M. & Snow, R. W. The global distribution and population at risk of malaria: past, present, and future. Lancet. Infect. Dis 4, 327–336 (2004).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Keiser, J. et al. Urbanization in sub-saharan Africa and implication for malaria control. Am. J. Trop. Med. Hyg. 71, 118–127 (2004).

    PubMed 
    Article 

    Google Scholar 

  • 19.

    Hay, S. I., Guerra, C. A., Tatem, A. J., Atkinson, P. M. & Snow, R. W. Urbanization, malaria transmission and disease burden in Africa. Nat. Rev. Microbiol. 3, 81 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Mourou, J.-R. et al. Malaria transmission and insecticide resistance of Anopheles gambiae in Libreville and Port-Gentil, Gabon. Malaria J. 9, 1475–2875 (2010).

    Article 

    Google Scholar 

  • 21.

    Ndo, C., Menze-Djantio, B. & Antonio-Nkondjio, C. Awareness, attitudes and prevention of malaria in the cities of Douala and Yaoundé (Cameroon). Parasit. Vectors 4, 181 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Kamdem, C. et al. Anthropogenic habitat disturbance and ecological divergence between incipient species of the malaria mosquito Anopheles gambiae. PloS One 7, e39453 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Akogbeto, M., Chippaux, J.-P. & Coluzzi, M. . Le. paludisme urbain côtier à Cotonou (République du Bénin). Étude entomologique. Revue d’Epidémiologie Santé Publique 40, 233–239 (1992).

    CAS 

    Google Scholar 

  • 24.

    Awolola, T., Oduola, A., Obansa, J., Chukwurar, N. & Unyimadu, J. Anopheles gambiae ss breeding in polluted water bodies in urban Lagos, southwestern Nigeria. J. Vect. Borne Diseas. 44, 241 (2007).

  • 25.

    Ravoahangimalala, R., Randrianambinintsoa, E., Tchuinkam, T. & Robert, V. Malaria in the urban highland area of Antananarivo, Madagascar: bioecology of Anopheles arabiensis. Bull. Soc. Pathol. Exot. 101, 348 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Labbo, R. et al. Ecology of urban malaria vectors in Niamey, Republic of Niger. Malaria J. 15, 314 (2016).

    Article 

    Google Scholar 

  • 27.

    Klinkenberg, E. et al. Malaria and irrigated crops, Accra, Ghana. Emerg. Infect. Dis. 11, 1290 (2005).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Baudon, D. & Spiegel, A. Paludisme urbain, paludisme de demain pour l’Afrique sub-saharienne. Bull. Soc. Pathol. Exot. 96, 3–155 (2003).

    Google Scholar 

  • 29.

    Carme, B. Reducing the risk of malaria acquisition by urban dwellers of sub-Saharan Africa during travel in malaria-endemic areas. J. Infect. Dis. 170, 257–258 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 30.

    Silva, P. M. & Marshall, J. M. Factors contributing to urban malaria transmission in sub-Saharan Africa: a systematic review. J. Trop. Med. https://doi.org/10.1155/2012/819563 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Bouyou-Akotet, M. K. et al. Falciparum malaria as an emerging cause of fever in adults living in Gabon, Central Africa. BioMed. Res. Internat. (2014).

  • 32.

    Coetzee, M. et al. Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex. Zootaxa 3619, 246–274 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Fontaine, M. C. et al. Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science 347, 1258524 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 34.

    Tene, F. B. et al. Habitat segregation and ecological character displacement in cryptic African malaria mosquitoes. Evolut. Appl. 7 (2015).

  • 35.

    Mourou, J.-R. et al. Malaria transmission in Libreville: results of a one year survey. Malar. J. 11, 40 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Trape, J.-F. et al. Malaria morbidity among children exposed to low seasonal transmission in Dakar, Senegal and its implications for malaria control in tropical Africa. Am. J. Trop. Med. Hyg. 48, 748–756 (1993).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Dukeen, M. Y. & Omer, S. Ecology of the malaria vector Anopheles arabiensis Patton (Diptera: Culicidae) by the Nile in northern Sudan. Bull. Entomol. Res. 76, 451–467 (1986).

    Article 

    Google Scholar 

  • 38.

    Robert, V., Awono-Ambene, H. & Thioulouse, J. Ecology of larval mosquitoes, with special reference to Anopheles arabiensis (Diptera: Culcidae) in market-garden wells in urban Dakar, Senegal. J. Med. Entomol. 35, 948–955 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 39.

    Takken, W. & Lindsay, S. Increased threat of urban malaria from Anopheles stephensi mosquitoes, Africa. Emerg. Infect. Dis. 25, 1431 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Seyfarth, M., Khaireh, B. A., Abdi, A. A., Bouh, S. M. & Faulde, M. K. Five years following first detection of Anopheles stephensi (Diptera: Culicidae) in Djibouti, Horn of Africa: populations established—malaria emerging. Parasitol. Res. 118, 725–732 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Sinka, M. et al. A new malaria vector in Africa: predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proceedi. Nat. Acad. Sci. 117 (2020).

  • 42.

    Tene, B. et al. Physiological correlates of ecological divergence along an urbanization gradient: differential tolerance to ammonia among molecular forms of the malaria mosquito Anopheles gambiae. BMC Ecol. 13, 1 (2013).

    Article 

    Google Scholar 

  • 43.

    Akpodiete, N. O. & Tripet, F. Laboratory and microcosm experiments reveal contrasted adaptive responses to ammonia and water mineralisation in aquatic stages of the sibling species Anopheles gambiae (sensu stricto) and Anopheles coluzzii. Parasit. Vectors 14, 1–19 (2021).

    Article 
    CAS 

    Google Scholar 

  • 44.

    Udo , W., In Su, C. & Eva-Maria, D. (ed Environmental Protection Agency) (2009).

  • 45.

    Huff, L., Delos, C., Gallagher, K. & Beaman, J. Aquatic life ambient water quality criteria for ammonia-freshwater. Washington DC: US Environmental Protection Agency (2013).

  • 46.

    Antonio-Nkondjio, C. et al. Anopheles gambiae distribution and insecticide resistance in the cities of Douala and Yaounde(Cameroon): influence of urban agriculture and pollution. Malar. J. 10, 154–154 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Djouaka, R. F. et al. Does the spillage of petroleum products in Anopheles breeding sites have an impact on the pyrethroid resistance?. Malar. J. 6, 159 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 48.

    Tene Fossog, B. et al. Water quality and Anopheles gambiae larval tolerance to pyrethroids in the cities of Douala and Yaounde (Cameroon). J. Trop. Med. 2012 (2012).

  • 49.

    Ossè, R., Bangana, S., Aïkpon, R., Kintonou, J. & Sagbohan, H. Adaptation of Anopheles coluzzii Larvae to polluted breeding Sites in Cotonou: a strengthening in Urban Malaria transmission in Benin. Vector Biology Journal 6, 2 (2019).

    Google Scholar 

  • 50.

    Cassone, B. J. et al. Gene expression divergence between malaria vector sibling species Anopheles gambiae and Anopheles coluzzii from rural and urban Yaounde Cameroon. Mol. Ecol. 23, 2242–2259 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Kamdem, C., Fouet, C., Gamez, S. & White, B. J. Pollutants and insecticides drive local adaptation in African malaria mosquitoes. Mol. Biol. Evol. 34, 1261–1275 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Kengne, P., Charmantier, G., Blondeau-Bidet, E., Costantini, C. & Ayala, D. Tolerance of disease-vector mosquitoes to brackish water and their osmoregulatory ability. Ecosphere 10, e02783. https://doi.org/10.1002/ecs2.2783 (2019).

    Article 

    Google Scholar 

  • 53.

    Peres-Neto, P. R., Jackson, D. A. & Somers, K. M. How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Comput. Stat. Data Anal. 49, 974–997 (2005).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 54.

    Panagopoulos, G., Lambrakis, N., Tsolis-Katagas, P. & Papoulis, D. Cation exchange processes and human activities in unconfined aquifers. Environ. Geol. 46, 542–552 (2004).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Elhatip, H., Afşin, M., Dirik, K., Kurmaç, Y. & Kavurmacı, M. Influences of human activities and agriculture on groundwater quality of Kayseri-Incesu-Dokuzpınar springs, central Anatolian part of Turkey. Environ. Geol. 44, 490–494 (2003).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Azedine, H., Lynda, C. & Younes, S. Wastewater discharge impact on groundwater quality of Béchar city, southwestern Algeria: an anthropogenic activities mapping approach. Procedia Eng. 33, 242–247 (2012).

    Article 
    CAS 

    Google Scholar 

  • 57.

    Hamon, J., Burnett, G., Adam, J.-P., Rickenbach, A. & Grjébine, A. Culex pipiens fatigans Wiedemann, Wuchereria bancrofti Cobbold, et le développement économique de l’Afrique tropicale. Bull. World Health Organ. 37, 217 (1967).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Subra, R. Biology and control of Culex pipiens quinquefasciatus* Say, 1823 (Diptera, Culicidae) with special reference to Africa. Int. J. Trop. Insect Sci. 1, 319–338 (1981).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Brengues, J. Culex pipiens fatigans Wiedemann, en Afrique tropicale: son importance et son contrôle. Med. Trop. 38, 691–694 (1978).

    CAS 

    Google Scholar 

  • 60.

    Fanello, C., Santolamazza, F. & Della, T. A. Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP. Med. Vet. Entomol. 16, 461–464 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 61.

    Cangelosi, R. & Goriely, A. Component retention in principal component analysis with application to cDNA microarray data. Biol. Direct 2, 2 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 62.

    Edi, C. V. et al. CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito Anopheles gambiae. PloS Genet. 10, e1004236 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 63.

    Djouaka, R. F. et al. Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae ss from Southern Benin and Nigeria. BMC Genom. 9, 538 (2008).

    Article 
    CAS 

    Google Scholar 

  • 64.

    Balabanidou, V. et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc. Natl. Acad. Sci. 113, 9268–9273 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Mueller, P. et al. Pyrethroid tolerance is associated with elevated expression of antioxidants and agricultural practice in Anopheles arabiensis sampled from an area of cotton fields in Northern Cameroon. Mol. Ecol. 17, 1145–1155 (2008).

    Article 
    CAS 

    Google Scholar 

  • 66.

    Larsen, E. H. et al. Osmoregulation and excretion. Compr. Physiol. 4, 405–573 (2011).

    Google Scholar 

  • 67.

    Lin, L.-Y., Horng, J.-L., Kunkel, J. G. & Hwang, P.-P. Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am. J. Physiol. Cell Physiol. 290, C371–C378 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 68.

    Mantel, L. H. & Farmer, L. L. Osmotic and ionic regulation. Internal Anatomy Physiol. Regul. 5, 53–161 (1983).

    Article 

    Google Scholar 

  • 69.

    Furriel, R., McNamara, J. & Leone, F. Characterization of (Na+, K+)-ATPase in gill microsomes of the freshwater shrimp Macrobrachium olfersii. Comput. Biochem. Physiol. B: Biochem. Mol. Biol. 126, 303–315 (2000).

    CAS 
    Article 

    Google Scholar 

  • 70.

    Chiu, T.-L., Wen, Z., Rupasinghe, S. G. & Schuler, M. A. Comparative molecular modeling of Anopheles gambiae CYP6Z1, a mosquito P450 capable of metabolizing DDT. Proc. Natl. Acad. Sci. 105, 8855–8860 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Antonio-Nkondjio, C. et al. Investigation of mechanisms of bendiocarb resistance in Anopheles gambiae populations from the city of Yaoundé, Cameroon. Malaria J. 15, 424 (2016).

    Article 
    CAS 

    Google Scholar 

  • 72.

    David, J.-P., Ismail, H. M., Chandor-Proust, A. & Paine, M. J. I. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth. Phil. Trans. R. Soc. B 368, 20120429 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 73.

    Müller, P. et al. Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids. PloS Genet. 4, e1000286 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 74.

    Mitchell, S. N. et al. Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana. Proc. Natl. Acad. Sci. 109, 6147–6152 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 75.

    Irving, H., Riveron, J., Ibrahim, S. S., Lobo, N. & Wondji, C. Positional cloning of rp2 QTL associates the P450 genes CYP6Z1, CYP6Z3 and CYP6M7 with pyrethroid resistance in the malaria vector Anopheles funestus. Heredity 109, 383 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 76.

    Rongnoparut, P., Boonsuepsakul, S., Chareonviriyaphap, T. & Thanomsing, N. Cloning of cytochrome P450, CYP6P5, and CYP6AA2 from Anopheles minimus resistant to deltamethrin. J. Vector Ecol. 28, 150–158 (2003).

    PubMed 

    Google Scholar 

  • 77.

    Costantini, C. et al. Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae. BMC Ecol. 9, 16 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 78.

    Simard, F. et al. Ecological niche partitioning between Anopheles gambiae molecular forms in Cameroon: the ecological side of speciation. BMC Ecol. 9, 17 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 79.

    Sattler, M. A. et al. Habitat characterization and spatial distribution of Anopheles sp. mosquito larvae in Dar es Salaam (Tanzania) during an extended dry period. Malaria J. 4, 4 (2005).

    Article 

    Google Scholar 

  • 80.

    Kudom, A. A. Larval ecology of Anopheles coluzzii in Cape Coast, Ghana: water quality, nature of habitat and implication for larval control. Malar. J. 14, 447 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 81.

    Etang, J. et al. Anopheles coluzzii larval habitat and insecticide resistance in the island area of Manoka, Cameroon. BMC Infect. Dis. 16, 217 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 82.

    Mbida, A. M. et al. Nouvel aperçu sur l’écologie larvaire d’Anopheles coluzzii Coetzee et Wilkerson, 2013 dans l’estuaire du Wouri, Littoral-Cameroun. Bulletin de la Société de pathologie exotique 110, 92–101 (2017).

    Article 

    Google Scholar 

  • 83.

    Gimonneau, G. et al. Larval habitat segregation between the molecular forms of the mosquito Anopheles gambiae in a rice field area of Burkina Faso, West Africa. Med. Vet. Entomol. 26, 9–17 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 84.

    Djamouko-Djonkam, L. et al. Spatial distribution of Anopheles gambiae sensu lato larvae in the urban environment of Yaoundé, Cameroon. Infect. Dis. Poverty 8, 84 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 85.

    Dida, G. O. et al. Spatial distribution and habitat characterization of mosquito species during the dry season along the Mara River and its tributaries, in Kenya and Tanzania. Infect. Dis. Poverty 7, 2 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 86.

    King, S. A. et al. The Role of Detoxification Enzymes in the Adaptation of the Major Malaria Vector Anopheles gambiae (Giles; Diptera: Culicidae) to Polluted Water. J. Med. Entomol. 54, 1674–1683 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 87.

    Donihue, C. M. & Lambert, M. R. Adaptive evolution in urban ecosystems. Ambio 44, 194–203 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 88.

    Coret, C., Zaugg, R. & Chouin, G. Les villes en Afrique avant 1900. Bilan historiographique et perspectives de recherche. Afriques. Débats, méthodes et terrains d’histoire (2020).

  • 89.

    Ndiath, M. O. et al. Composition and genetics of malaria vector populations in the Central African Republic. Malar. J. 15, 1–10 (2016).

    Article 

    Google Scholar 

  • 90.

    Mattah, P. A. D. et al. Diversity in breeding sites and distribution of Anopheles mosquitoes in selected urban areas of southern Ghana. Parasit. Vectors 10, 1–15 (2017).

    Article 

    Google Scholar 

  • 91.

    Diabaté, A. et al. Larval development of the molecular forms of Anopheles gambiae (Diptera: Culicidae) in different habitats: a transplantation experiment. J. Med. Entomol. 42, 548–553 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 92.

    Briones, M. J. I., Ineson, P. & Piearce, T. G. Effects of climate change on soil fauna; responses of enchytraeids, Diptera larvae and tardigrades in a transplant experiment. Appl. Soil. Ecol. 6, 117–134 (1997).

    Article 

    Google Scholar 

  • 93.

    Szulkin, M., Munshi-South, J. & Charmantier, A. Urban evolutionary biology (Oxford University Press, 2020).

    Book 

    Google Scholar 

  • 94.

    Bradley, T. Physiology of osmoregulation in mosquitoes. Annu. Rev. Entomol. 32, 439–462 (1987).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 95.

    Raabe, W. & Lin, S. Pathophysiology of ammonia intoxication. Exp. Neurol. 87, 519–532 (1985).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 96.

    Ip, Y., Chew, S. & Randall, D. Ammonia toxicity, tolerance, and excretion. Fish Physiol. 20, 109–148 (2001).

    CAS 
    Article 

    Google Scholar 

  • 97.

    Randall, D. J. & Tsui, T. Ammonia toxicity in fish. Mar. Pollut. Bull. 45, 17–23 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 98.

    Yadouléton, A. et al. The impact of the expansion of urban vegetable farming on malaria transmission in major cities of Benin. Parasit. Vectors 3, 118 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 99.

    Girod, R., Orlandi-Pradines, E., Rogier, C. & Pages, F. Malaria transmission and insecticide resistance of Anopheles gambiae (Diptera: Culicidae) in the French military camp of Port-Bouet, Abidjan (Cote d’Ivoire): implications for vector control. J. Med. Entomol. 43, 1082–1087 (2006).

    PubMed 

    Google Scholar 

  • 100.

    Cuamba, N., Choi, K. S. & Townson, H. Malaria vectors in Angola: distribution of species and molecular forms of the Anopheles gambiae complex, their pyrethroid insecticide knockdown resistance (kdr) status and Plasmodium falciparum sporozoite rates. Malar. J. 5, 2 (2006).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 101.

    Jones, C. M. et al. Insecticide resistance in Culex quinquefasciatus from Zanzibar: implications for vector control programmes. Parasit. Vectors 5, 1–9 (2012).

    Article 
    CAS 

    Google Scholar 

  • 102.

    Pagès, F. et al. Malaria transmission in Dakar: a two-year survey. Malar. J. 7, 178 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 103.

    Corbel, V. et al. Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, West Africa. Acta Tropica 101, 207–216 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 104.

    Nchoutpouen, E. et al. Culex species diversity, susceptibility to insecticides and role as potential vector of lymphatic filariasis in the city of Yaoundé, Cameroon. PLoS Negl. Trop. Dis. 13, e0007229 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 105.

    Antonio-Nkondjio, C. et al. High mosquito burden and malaria transmission in a district of the city of Douala, Cameroon. BMC Infect. Dis. 12, 275 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 106.

    Calhoun, L. M. et al. Combined sewage overflows (CSO) are major urban breeding sites for Culex quinquefasciatus in Atlanta, Georgia. Am. J. Trop. Med. Hyg. 77, 478–484 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 107.

    Lines, J., Harpham, T., Leake, C. & Schofield, C. Trends, priorities and policy directions in the control of vector-borne diseases in urban environments. Health Policy Plan. 9, 113–129 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 108.

    Adje, D. D. et al. Étude de la pollution organique de la rivière Okedama dans la Commune de Parakou. Afrique Sci. 15, 299–305 (2019).

    Google Scholar 

  • 109.

    Mpakam, H. et al. Etude des facteurs de pollution des ressources en eau en milieu urbain: cas de Bafoussam (Ouest-Cameroun). Actes du colloque international sur le thème” changements climatiques et évaluation environnementale”, de Niamey (Niger) (2009).

  • 110.

    Adams, N. & Bealing, D. Organic pollution: biochemical oxygen demand and ammonia. Handbook of Ecotoxicology, 728–749 (1997).

  • 111.

    Mireji, P. O. et al. Heavy metals in mosquito larval habitats in urban Kisumu and Malindi, Kenya, and their impact. Ecotoxicol. Environ. Saf. 70, 147–153 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 112.

    White, B. J. et al. Dose and developmental responses of Anopheles merus larvae to salinity. J. Exp. Biol. 216, 3433–3441 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 113.

    Zhao, G.-D. et al. Transcription profiling of eight cytochrome P450s potentially involved in xenobiotic metabolism in the silkworm, Bombyx mori. Pesticide Biochem. Physiol. 100, 251–255 (2011).

    CAS 
    Article 

    Google Scholar 

  • 114.

    Oliver, S. V. & Brooke, B. D. The effect of metal pollution on the life history and insecticide resistance phenotype of the major malaria vector Anopheles arabiensis (Diptera: Culicidae). PloS One 13, e0192551 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 115.

    Nkya, T. E. et al. Impact of agriculture on the selection of insecticide resistance in the malaria vector Anopheles gambiae: a multigenerational study in controlled conditions. Parasit. Vectors 7, 1–12 (2014).

    Article 
    CAS 

    Google Scholar 

  • 116.

    David, J.-P., Ismail, H. M., Chandor-Proust, A. & Paine, M. J. I. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120429 (2013).

    Article 
    CAS 

    Google Scholar 

  • 117.

    Wondji, C. S. et al. Two duplicated P450 genes are associated with pyrethroid resistance in Anopheles funestus, a major malaria vector. Genome Res. 19, 452–459 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 118.

    Vontas, J., Katsavou, E. & Mavridis, K. Cytochrome P450-based metabolic insecticide resistance in Anopheles and Aedes mosquito vectors: Muddying the waters. Pesticide Biochem. Physiol. 69, 104666 (2020).

    Article 
    CAS 

    Google Scholar 

  • 119.

    Patrick, M. L., Aimanova, K., Sanders, H. R. & Gill, S. S. P-type Na+/K+-ATPase and V-type H+-ATPase expression patterns in the osmoregulatory organs of larval and adult mosquito Aedes aegypti. J. Exp. Biol. 209, 4638–4651 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 120.

    White, B. J., Collins, F. H. & Besansky, N. J. Evolution of Anopheles gambiae in Relation to Humans and Malaria. Annual Review of Ecology, Evolution, and Systematics 42 (2011).

  • 121.

    Dabiré, K. et al. Occurrence of natural Anopheles arabiensis swarms in an urban area of Bobo-Dioulasso city, Burkina Faso, West Africa. Acta Tropica 132, S35–S41 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 122.

    Service, M. W. Mosquito ecology field sampling methods. 2nd edn, (Elsevier Applied Science, 1993).

  • 123.

    Bass, C. et al. Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods. Malar. J. 6, 1–14 (2007).

    Article 
    CAS 

    Google Scholar 

  • 124.

    Santolamazza, F. et al. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar. J. 7, 163 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 125.

    Tene F. B. et al. Resistance to DDT in an urban setting: common mechanisms implicated in both M and S forms of Anopheles gambiae in the city of Yaoundé Cameroon. PloS one 8 (2013).

  • 126.

    Nsango, S. E. et al. AP-1/Fos-TGase2 axis mediates wounding-induced Plasmodium falciparum killing in Anopheles gambiae. J. Biolog. Chem. 288 (2013).

  • 127.

    Dray, S. & Dufour, A.-B. The ade4 package: implementing the duality diagram for ecologists. J. Statis. Software 22 (2007).

  • 128.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. (2015).

  • 129.

    Bartlett, M. S. Properties of sufficiency and statistical tests. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 160, 268–282 (1937).

    ADS 
    MATH 

    Google Scholar 

  • 130.

    Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 131.

    Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).

    MathSciNet 
    Article 

    Google Scholar 

  • 132.

    Schloerke, B., Crowley, J., Cook, D., Briatte, F., Marbach, M., Thoen, E., Elberg, A., & Larmarange, J. GGally: extension to ‘ggplot2’. R package version 1.4. 0. R Foundation for Statistical Computing. (2018).


  • Source: Ecology - nature.com

    Cleaning up industrial filtration

    Using graphene foam to filter toxins from drinking water