Chin, A. Urban transformation of river landscapes in a global context. Geomorphology 79, 460–487 (2006).
Google Scholar
Thomas, W. L. Man’s role in changing the face of the earth. (The University of Chicago, 1956).
Johnson, M. T. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).
Google Scholar
Dubois, J. & Cheptou, P.-O. Effects of fragmentation on plant adaptation to urban environments. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160038 (2017).
Google Scholar
Cavia, R., Cueto, G. R. & Suárez, O. V. Changes in rodent communities according to the landscape structure in an urban ecosystem. Landsc. Urban Plan. 90, 11–19 (2009).
Google Scholar
Jackson, J. A. Ivory-billed Woodpecker (Campephilus principalis): Hope, and the interfaces of science, conservation, and politics. Auk 123, 1–15 (2006).
Google Scholar
McIntyre, N. E. Ecology of urban arthropods: a review and a call to action. Ann. Entomol. Soc. Am. 93, 825–835 (2000).
Google Scholar
Crispo, E., Moore, J. S., Lee-Yaw, J. A., Gray, S. M. & Haller, B. C. Broken barriers: Human-induced changes to gene flow and introgression in animals: An examination of the ways in which humans increase genetic exchange among populations and species and the consequences for biodiversity. BioEssays 33, 508–518 (2011).
Google Scholar
Triteeraprapab, S. et al. Transmission of the nocturnal periodic strain of Wuchereria bancrofti by Culex quinquefasciatus: establishing the potential for urban filariasis in Thailand. Epidemiol. Infect. 125, 207–212 (2000).
Google Scholar
Carrieri, M., Bacchi, M., Bellini, R. & Maini, S. On the competition occurring between Aedes albopictus and Culex pipiens (Diptera: Culicidae) in Italy. Environ. Entomol. 32, 1313–1321 (2003).
Google Scholar
Doby, J. & Mouchet, J. Écologie larvaire de quelques espèces de Culicidés dans la région de Yaoundé (Sud-Cameroun). Bulletin de la Société de Pathologie Exotique 50, 945–957 (1957).
Google Scholar
Delatte, H. et al. Aedes albopictus, vecteur des virus du chikungunya et de la dengue à la Réunion: biologie et contrôle. Parasite 15, 3–13 (2008).
Google Scholar
Vazeille, M., Moutailler, S., Pages, F., Jarjaval, F. & Failloux, A. B. Introduction of Aedes albopictus in Gabon: what consequences for dengue and chikungunya transmission?. Tropical Med. Int. Health 13, 1176–1179 (2008).
Google Scholar
United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). (New York, United Nations, 2019).
Trape, J. F. L’impact de l’urbanisation sur le paludisme en Afrique centrale. Doctoral dissertation, Université Paris 11 (1986).
Robert, V. et al. Malaria transmission in urban sub-Saharan Africa. Am. J. Trop. Med. Hyg. 68, 169–176 (2003).
Google Scholar
Hay, S. I., Guerra, C. A., Tatem, A. J., Noor, A. M. & Snow, R. W. The global distribution and population at risk of malaria: past, present, and future. Lancet. Infect. Dis 4, 327–336 (2004).
Google Scholar
Keiser, J. et al. Urbanization in sub-saharan Africa and implication for malaria control. Am. J. Trop. Med. Hyg. 71, 118–127 (2004).
Google Scholar
Hay, S. I., Guerra, C. A., Tatem, A. J., Atkinson, P. M. & Snow, R. W. Urbanization, malaria transmission and disease burden in Africa. Nat. Rev. Microbiol. 3, 81 (2005).
Google Scholar
Mourou, J.-R. et al. Malaria transmission and insecticide resistance of Anopheles gambiae in Libreville and Port-Gentil, Gabon. Malaria J. 9, 1475–2875 (2010).
Google Scholar
Ndo, C., Menze-Djantio, B. & Antonio-Nkondjio, C. Awareness, attitudes and prevention of malaria in the cities of Douala and Yaoundé (Cameroon). Parasit. Vectors 4, 181 (2011).
Google Scholar
Kamdem, C. et al. Anthropogenic habitat disturbance and ecological divergence between incipient species of the malaria mosquito Anopheles gambiae. PloS One 7, e39453 (2012).
Google Scholar
Akogbeto, M., Chippaux, J.-P. & Coluzzi, M. . Le. paludisme urbain côtier à Cotonou (République du Bénin). Étude entomologique. Revue d’Epidémiologie Santé Publique 40, 233–239 (1992).
Google Scholar
Awolola, T., Oduola, A., Obansa, J., Chukwurar, N. & Unyimadu, J. Anopheles gambiae ss breeding in polluted water bodies in urban Lagos, southwestern Nigeria. J. Vect. Borne Diseas. 44, 241 (2007).
Ravoahangimalala, R., Randrianambinintsoa, E., Tchuinkam, T. & Robert, V. Malaria in the urban highland area of Antananarivo, Madagascar: bioecology of Anopheles arabiensis. Bull. Soc. Pathol. Exot. 101, 348 (2008).
Google Scholar
Labbo, R. et al. Ecology of urban malaria vectors in Niamey, Republic of Niger. Malaria J. 15, 314 (2016).
Google Scholar
Klinkenberg, E. et al. Malaria and irrigated crops, Accra, Ghana. Emerg. Infect. Dis. 11, 1290 (2005).
Google Scholar
Baudon, D. & Spiegel, A. Paludisme urbain, paludisme de demain pour l’Afrique sub-saharienne. Bull. Soc. Pathol. Exot. 96, 3–155 (2003).
Carme, B. Reducing the risk of malaria acquisition by urban dwellers of sub-Saharan Africa during travel in malaria-endemic areas. J. Infect. Dis. 170, 257–258 (1994).
Google Scholar
Silva, P. M. & Marshall, J. M. Factors contributing to urban malaria transmission in sub-Saharan Africa: a systematic review. J. Trop. Med. https://doi.org/10.1155/2012/819563 (2012).
Google Scholar
Bouyou-Akotet, M. K. et al. Falciparum malaria as an emerging cause of fever in adults living in Gabon, Central Africa. BioMed. Res. Internat. (2014).
Coetzee, M. et al. Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex. Zootaxa 3619, 246–274 (2013).
Google Scholar
Fontaine, M. C. et al. Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science 347, 1258524 (2015).
Google Scholar
Tene, F. B. et al. Habitat segregation and ecological character displacement in cryptic African malaria mosquitoes. Evolut. Appl. 7 (2015).
Mourou, J.-R. et al. Malaria transmission in Libreville: results of a one year survey. Malar. J. 11, 40 (2012).
Google Scholar
Trape, J.-F. et al. Malaria morbidity among children exposed to low seasonal transmission in Dakar, Senegal and its implications for malaria control in tropical Africa. Am. J. Trop. Med. Hyg. 48, 748–756 (1993).
Google Scholar
Dukeen, M. Y. & Omer, S. Ecology of the malaria vector Anopheles arabiensis Patton (Diptera: Culicidae) by the Nile in northern Sudan. Bull. Entomol. Res. 76, 451–467 (1986).
Google Scholar
Robert, V., Awono-Ambene, H. & Thioulouse, J. Ecology of larval mosquitoes, with special reference to Anopheles arabiensis (Diptera: Culcidae) in market-garden wells in urban Dakar, Senegal. J. Med. Entomol. 35, 948–955 (1998).
Google Scholar
Takken, W. & Lindsay, S. Increased threat of urban malaria from Anopheles stephensi mosquitoes, Africa. Emerg. Infect. Dis. 25, 1431 (2019).
Google Scholar
Seyfarth, M., Khaireh, B. A., Abdi, A. A., Bouh, S. M. & Faulde, M. K. Five years following first detection of Anopheles stephensi (Diptera: Culicidae) in Djibouti, Horn of Africa: populations established—malaria emerging. Parasitol. Res. 118, 725–732 (2019).
Google Scholar
Sinka, M. et al. A new malaria vector in Africa: predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proceedi. Nat. Acad. Sci. 117 (2020).
Tene, B. et al. Physiological correlates of ecological divergence along an urbanization gradient: differential tolerance to ammonia among molecular forms of the malaria mosquito Anopheles gambiae. BMC Ecol. 13, 1 (2013).
Google Scholar
Akpodiete, N. O. & Tripet, F. Laboratory and microcosm experiments reveal contrasted adaptive responses to ammonia and water mineralisation in aquatic stages of the sibling species Anopheles gambiae (sensu stricto) and Anopheles coluzzii. Parasit. Vectors 14, 1–19 (2021).
Google Scholar
Udo , W., In Su, C. & Eva-Maria, D. (ed Environmental Protection Agency) (2009).
Huff, L., Delos, C., Gallagher, K. & Beaman, J. Aquatic life ambient water quality criteria for ammonia-freshwater. Washington DC: US Environmental Protection Agency (2013).
Antonio-Nkondjio, C. et al. Anopheles gambiae distribution and insecticide resistance in the cities of Douala and Yaounde(Cameroon): influence of urban agriculture and pollution. Malar. J. 10, 154–154 (2011).
Google Scholar
Djouaka, R. F. et al. Does the spillage of petroleum products in Anopheles breeding sites have an impact on the pyrethroid resistance?. Malar. J. 6, 159 (2007).
Google Scholar
Tene Fossog, B. et al. Water quality and Anopheles gambiae larval tolerance to pyrethroids in the cities of Douala and Yaounde (Cameroon). J. Trop. Med. 2012 (2012).
Ossè, R., Bangana, S., Aïkpon, R., Kintonou, J. & Sagbohan, H. Adaptation of Anopheles coluzzii Larvae to polluted breeding Sites in Cotonou: a strengthening in Urban Malaria transmission in Benin. Vector Biology Journal 6, 2 (2019).
Cassone, B. J. et al. Gene expression divergence between malaria vector sibling species Anopheles gambiae and Anopheles coluzzii from rural and urban Yaounde Cameroon. Mol. Ecol. 23, 2242–2259 (2014).
Google Scholar
Kamdem, C., Fouet, C., Gamez, S. & White, B. J. Pollutants and insecticides drive local adaptation in African malaria mosquitoes. Mol. Biol. Evol. 34, 1261–1275 (2017).
Google Scholar
Kengne, P., Charmantier, G., Blondeau-Bidet, E., Costantini, C. & Ayala, D. Tolerance of disease-vector mosquitoes to brackish water and their osmoregulatory ability. Ecosphere 10, e02783. https://doi.org/10.1002/ecs2.2783 (2019).
Google Scholar
Peres-Neto, P. R., Jackson, D. A. & Somers, K. M. How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Comput. Stat. Data Anal. 49, 974–997 (2005).
Google Scholar
Panagopoulos, G., Lambrakis, N., Tsolis-Katagas, P. & Papoulis, D. Cation exchange processes and human activities in unconfined aquifers. Environ. Geol. 46, 542–552 (2004).
Google Scholar
Elhatip, H., Afşin, M., Dirik, K., Kurmaç, Y. & Kavurmacı, M. Influences of human activities and agriculture on groundwater quality of Kayseri-Incesu-Dokuzpınar springs, central Anatolian part of Turkey. Environ. Geol. 44, 490–494 (2003).
Google Scholar
Azedine, H., Lynda, C. & Younes, S. Wastewater discharge impact on groundwater quality of Béchar city, southwestern Algeria: an anthropogenic activities mapping approach. Procedia Eng. 33, 242–247 (2012).
Google Scholar
Hamon, J., Burnett, G., Adam, J.-P., Rickenbach, A. & Grjébine, A. Culex pipiens fatigans Wiedemann, Wuchereria bancrofti Cobbold, et le développement économique de l’Afrique tropicale. Bull. World Health Organ. 37, 217 (1967).
Google Scholar
Subra, R. Biology and control of Culex pipiens quinquefasciatus* Say, 1823 (Diptera, Culicidae) with special reference to Africa. Int. J. Trop. Insect Sci. 1, 319–338 (1981).
Google Scholar
Brengues, J. Culex pipiens fatigans Wiedemann, en Afrique tropicale: son importance et son contrôle. Med. Trop. 38, 691–694 (1978).
Google Scholar
Fanello, C., Santolamazza, F. & Della, T. A. Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP. Med. Vet. Entomol. 16, 461–464 (2002).
Google Scholar
Cangelosi, R. & Goriely, A. Component retention in principal component analysis with application to cDNA microarray data. Biol. Direct 2, 2 (2007).
Google Scholar
Edi, C. V. et al. CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito Anopheles gambiae. PloS Genet. 10, e1004236 (2014).
Google Scholar
Djouaka, R. F. et al. Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae ss from Southern Benin and Nigeria. BMC Genom. 9, 538 (2008).
Google Scholar
Balabanidou, V. et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc. Natl. Acad. Sci. 113, 9268–9273 (2016).
Google Scholar
Mueller, P. et al. Pyrethroid tolerance is associated with elevated expression of antioxidants and agricultural practice in Anopheles arabiensis sampled from an area of cotton fields in Northern Cameroon. Mol. Ecol. 17, 1145–1155 (2008).
Google Scholar
Larsen, E. H. et al. Osmoregulation and excretion. Compr. Physiol. 4, 405–573 (2011).
Lin, L.-Y., Horng, J.-L., Kunkel, J. G. & Hwang, P.-P. Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am. J. Physiol. Cell Physiol. 290, C371–C378 (2006).
Google Scholar
Mantel, L. H. & Farmer, L. L. Osmotic and ionic regulation. Internal Anatomy Physiol. Regul. 5, 53–161 (1983).
Google Scholar
Furriel, R., McNamara, J. & Leone, F. Characterization of (Na+, K+)-ATPase in gill microsomes of the freshwater shrimp Macrobrachium olfersii. Comput. Biochem. Physiol. B: Biochem. Mol. Biol. 126, 303–315 (2000).
Google Scholar
Chiu, T.-L., Wen, Z., Rupasinghe, S. G. & Schuler, M. A. Comparative molecular modeling of Anopheles gambiae CYP6Z1, a mosquito P450 capable of metabolizing DDT. Proc. Natl. Acad. Sci. 105, 8855–8860 (2008).
Google Scholar
Antonio-Nkondjio, C. et al. Investigation of mechanisms of bendiocarb resistance in Anopheles gambiae populations from the city of Yaoundé, Cameroon. Malaria J. 15, 424 (2016).
Google Scholar
David, J.-P., Ismail, H. M., Chandor-Proust, A. & Paine, M. J. I. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth. Phil. Trans. R. Soc. B 368, 20120429 (2013).
Google Scholar
Müller, P. et al. Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids. PloS Genet. 4, e1000286 (2008).
Google Scholar
Mitchell, S. N. et al. Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana. Proc. Natl. Acad. Sci. 109, 6147–6152 (2012).
Google Scholar
Irving, H., Riveron, J., Ibrahim, S. S., Lobo, N. & Wondji, C. Positional cloning of rp2 QTL associates the P450 genes CYP6Z1, CYP6Z3 and CYP6M7 with pyrethroid resistance in the malaria vector Anopheles funestus. Heredity 109, 383 (2012).
Google Scholar
Rongnoparut, P., Boonsuepsakul, S., Chareonviriyaphap, T. & Thanomsing, N. Cloning of cytochrome P450, CYP6P5, and CYP6AA2 from Anopheles minimus resistant to deltamethrin. J. Vector Ecol. 28, 150–158 (2003).
Google Scholar
Costantini, C. et al. Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae. BMC Ecol. 9, 16 (2009).
Google Scholar
Simard, F. et al. Ecological niche partitioning between Anopheles gambiae molecular forms in Cameroon: the ecological side of speciation. BMC Ecol. 9, 17 (2009).
Google Scholar
Sattler, M. A. et al. Habitat characterization and spatial distribution of Anopheles sp. mosquito larvae in Dar es Salaam (Tanzania) during an extended dry period. Malaria J. 4, 4 (2005).
Google Scholar
Kudom, A. A. Larval ecology of Anopheles coluzzii in Cape Coast, Ghana: water quality, nature of habitat and implication for larval control. Malar. J. 14, 447 (2015).
Google Scholar
Etang, J. et al. Anopheles coluzzii larval habitat and insecticide resistance in the island area of Manoka, Cameroon. BMC Infect. Dis. 16, 217 (2016).
Google Scholar
Mbida, A. M. et al. Nouvel aperçu sur l’écologie larvaire d’Anopheles coluzzii Coetzee et Wilkerson, 2013 dans l’estuaire du Wouri, Littoral-Cameroun. Bulletin de la Société de pathologie exotique 110, 92–101 (2017).
Google Scholar
Gimonneau, G. et al. Larval habitat segregation between the molecular forms of the mosquito Anopheles gambiae in a rice field area of Burkina Faso, West Africa. Med. Vet. Entomol. 26, 9–17 (2012).
Google Scholar
Djamouko-Djonkam, L. et al. Spatial distribution of Anopheles gambiae sensu lato larvae in the urban environment of Yaoundé, Cameroon. Infect. Dis. Poverty 8, 84 (2019).
Google Scholar
Dida, G. O. et al. Spatial distribution and habitat characterization of mosquito species during the dry season along the Mara River and its tributaries, in Kenya and Tanzania. Infect. Dis. Poverty 7, 2 (2018).
Google Scholar
King, S. A. et al. The Role of Detoxification Enzymes in the Adaptation of the Major Malaria Vector Anopheles gambiae (Giles; Diptera: Culicidae) to Polluted Water. J. Med. Entomol. 54, 1674–1683 (2017).
Google Scholar
Donihue, C. M. & Lambert, M. R. Adaptive evolution in urban ecosystems. Ambio 44, 194–203 (2015).
Google Scholar
Coret, C., Zaugg, R. & Chouin, G. Les villes en Afrique avant 1900. Bilan historiographique et perspectives de recherche. Afriques. Débats, méthodes et terrains d’histoire (2020).
Ndiath, M. O. et al. Composition and genetics of malaria vector populations in the Central African Republic. Malar. J. 15, 1–10 (2016).
Google Scholar
Mattah, P. A. D. et al. Diversity in breeding sites and distribution of Anopheles mosquitoes in selected urban areas of southern Ghana. Parasit. Vectors 10, 1–15 (2017).
Google Scholar
Diabaté, A. et al. Larval development of the molecular forms of Anopheles gambiae (Diptera: Culicidae) in different habitats: a transplantation experiment. J. Med. Entomol. 42, 548–553 (2005).
Google Scholar
Briones, M. J. I., Ineson, P. & Piearce, T. G. Effects of climate change on soil fauna; responses of enchytraeids, Diptera larvae and tardigrades in a transplant experiment. Appl. Soil. Ecol. 6, 117–134 (1997).
Google Scholar
Szulkin, M., Munshi-South, J. & Charmantier, A. Urban evolutionary biology (Oxford University Press, 2020).
Google Scholar
Bradley, T. Physiology of osmoregulation in mosquitoes. Annu. Rev. Entomol. 32, 439–462 (1987).
Google Scholar
Raabe, W. & Lin, S. Pathophysiology of ammonia intoxication. Exp. Neurol. 87, 519–532 (1985).
Google Scholar
Ip, Y., Chew, S. & Randall, D. Ammonia toxicity, tolerance, and excretion. Fish Physiol. 20, 109–148 (2001).
Google Scholar
Randall, D. J. & Tsui, T. Ammonia toxicity in fish. Mar. Pollut. Bull. 45, 17–23 (2002).
Google Scholar
Yadouléton, A. et al. The impact of the expansion of urban vegetable farming on malaria transmission in major cities of Benin. Parasit. Vectors 3, 118 (2010).
Google Scholar
Girod, R., Orlandi-Pradines, E., Rogier, C. & Pages, F. Malaria transmission and insecticide resistance of Anopheles gambiae (Diptera: Culicidae) in the French military camp of Port-Bouet, Abidjan (Cote d’Ivoire): implications for vector control. J. Med. Entomol. 43, 1082–1087 (2006).
Google Scholar
Cuamba, N., Choi, K. S. & Townson, H. Malaria vectors in Angola: distribution of species and molecular forms of the Anopheles gambiae complex, their pyrethroid insecticide knockdown resistance (kdr) status and Plasmodium falciparum sporozoite rates. Malar. J. 5, 2 (2006).
Google Scholar
Jones, C. M. et al. Insecticide resistance in Culex quinquefasciatus from Zanzibar: implications for vector control programmes. Parasit. Vectors 5, 1–9 (2012).
Google Scholar
Pagès, F. et al. Malaria transmission in Dakar: a two-year survey. Malar. J. 7, 178 (2008).
Google Scholar
Corbel, V. et al. Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, West Africa. Acta Tropica 101, 207–216 (2007).
Google Scholar
Nchoutpouen, E. et al. Culex species diversity, susceptibility to insecticides and role as potential vector of lymphatic filariasis in the city of Yaoundé, Cameroon. PLoS Negl. Trop. Dis. 13, e0007229 (2019).
Google Scholar
Antonio-Nkondjio, C. et al. High mosquito burden and malaria transmission in a district of the city of Douala, Cameroon. BMC Infect. Dis. 12, 275 (2012).
Google Scholar
Calhoun, L. M. et al. Combined sewage overflows (CSO) are major urban breeding sites for Culex quinquefasciatus in Atlanta, Georgia. Am. J. Trop. Med. Hyg. 77, 478–484 (2007).
Google Scholar
Lines, J., Harpham, T., Leake, C. & Schofield, C. Trends, priorities and policy directions in the control of vector-borne diseases in urban environments. Health Policy Plan. 9, 113–129 (1994).
Google Scholar
Adje, D. D. et al. Étude de la pollution organique de la rivière Okedama dans la Commune de Parakou. Afrique Sci. 15, 299–305 (2019).
Mpakam, H. et al. Etude des facteurs de pollution des ressources en eau en milieu urbain: cas de Bafoussam (Ouest-Cameroun). Actes du colloque international sur le thème” changements climatiques et évaluation environnementale”, de Niamey (Niger) (2009).
Adams, N. & Bealing, D. Organic pollution: biochemical oxygen demand and ammonia. Handbook of Ecotoxicology, 728–749 (1997).
Mireji, P. O. et al. Heavy metals in mosquito larval habitats in urban Kisumu and Malindi, Kenya, and their impact. Ecotoxicol. Environ. Saf. 70, 147–153 (2008).
Google Scholar
White, B. J. et al. Dose and developmental responses of Anopheles merus larvae to salinity. J. Exp. Biol. 216, 3433–3441 (2013).
Google Scholar
Zhao, G.-D. et al. Transcription profiling of eight cytochrome P450s potentially involved in xenobiotic metabolism in the silkworm, Bombyx mori. Pesticide Biochem. Physiol. 100, 251–255 (2011).
Google Scholar
Oliver, S. V. & Brooke, B. D. The effect of metal pollution on the life history and insecticide resistance phenotype of the major malaria vector Anopheles arabiensis (Diptera: Culicidae). PloS One 13, e0192551 (2018).
Google Scholar
Nkya, T. E. et al. Impact of agriculture on the selection of insecticide resistance in the malaria vector Anopheles gambiae: a multigenerational study in controlled conditions. Parasit. Vectors 7, 1–12 (2014).
Google Scholar
David, J.-P., Ismail, H. M., Chandor-Proust, A. & Paine, M. J. I. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120429 (2013).
Google Scholar
Wondji, C. S. et al. Two duplicated P450 genes are associated with pyrethroid resistance in Anopheles funestus, a major malaria vector. Genome Res. 19, 452–459 (2009).
Google Scholar
Vontas, J., Katsavou, E. & Mavridis, K. Cytochrome P450-based metabolic insecticide resistance in Anopheles and Aedes mosquito vectors: Muddying the waters. Pesticide Biochem. Physiol. 69, 104666 (2020).
Google Scholar
Patrick, M. L., Aimanova, K., Sanders, H. R. & Gill, S. S. P-type Na+/K+-ATPase and V-type H+-ATPase expression patterns in the osmoregulatory organs of larval and adult mosquito Aedes aegypti. J. Exp. Biol. 209, 4638–4651 (2006).
Google Scholar
White, B. J., Collins, F. H. & Besansky, N. J. Evolution of Anopheles gambiae in Relation to Humans and Malaria. Annual Review of Ecology, Evolution, and Systematics 42 (2011).
Dabiré, K. et al. Occurrence of natural Anopheles arabiensis swarms in an urban area of Bobo-Dioulasso city, Burkina Faso, West Africa. Acta Tropica 132, S35–S41 (2014).
Google Scholar
Service, M. W. Mosquito ecology field sampling methods. 2nd edn, (Elsevier Applied Science, 1993).
Bass, C. et al. Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods. Malar. J. 6, 1–14 (2007).
Google Scholar
Santolamazza, F. et al. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar. J. 7, 163 (2008).
Google Scholar
Tene F. B. et al. Resistance to DDT in an urban setting: common mechanisms implicated in both M and S forms of Anopheles gambiae in the city of Yaoundé Cameroon. PloS one 8 (2013).
Nsango, S. E. et al. AP-1/Fos-TGase2 axis mediates wounding-induced Plasmodium falciparum killing in Anopheles gambiae. J. Biolog. Chem. 288 (2013).
Dray, S. & Dufour, A.-B. The ade4 package: implementing the duality diagram for ecologists. J. Statis. Software 22 (2007).
Bates, D., Maechler, M., Bolker, B. & Walker, S. (2015).
Bartlett, M. S. Properties of sufficiency and statistical tests. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 160, 268–282 (1937).
Google Scholar
Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).
Google Scholar
Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).
Google Scholar
Schloerke, B., Crowley, J., Cook, D., Briatte, F., Marbach, M., Thoen, E., Elberg, A., & Larmarange, J. GGally: extension to ‘ggplot2’. R package version 1.4. 0. R Foundation for Statistical Computing. (2018).
Source: Ecology - nature.com