Letko, M., Seifert, S. N., Olival, K. J., Plowright, R. K. & Munster, V. J. Bat-borne virus diversity, spillover and emergence. Nat. Rev. Microbiol. 18, 461–471 (2020). This is a review of the overall diversity of bat-borne coronaviruses and research agenda for enhanced characterization of their zoonotic and pandemic potential.
Google Scholar
Dobson, B. A. P. et al. Ecology and economics for pandemic prevention. Science 369, 379–381 (2020).
Google Scholar
Plowright, R. K. et al. Land use-induced spillover: a call to action to safeguard environmental, animal, and human health. Lancet Planet. Heal. 5, e237–e245 (2021).
Shivaprakash, K. N., Sen, S., Paul, S., Kiesecker, J. M. & Bawa, K. S. Mammals, wildlife trade, and the next global pandemic. Curr. Biol. 31, 3671–3677.e3 (2021).
Google Scholar
Huong, N. Q. et al. Coronavirus testing indicates transmission risk increases along wildlife supply chains for human consumption in Viet Nam, 2013–2014. PLoS ONE 15, e0237129 (2020). This study provides evidence that coronavirus detection increases along the supply chain of rodents destined for human consumption.
Google Scholar
Xiao, X., Newman, C., Buesching, C. D., Macdonald, D. W. & Zhou, Z.-M. Animal sales from Wuhan wet markets immediately prior to the COVID-19 pandemic. Sci. Rep. 11, 11898 (2021).
Google Scholar
Chen, L., Liu, B., Yang, J. & Jin, Q. DBatVir: the database of bat-associated viruses. Database 2014, 1–7 (2014).
Tao, Y. et al. Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history. J. Virol. 91, 1–16 (2017).
Google Scholar
Cui, J., Li, F. & Shi, Z. L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192 (2019).
Google Scholar
Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020). This is one of the first studies to discover viruses related to SARS-CoV-2 in wild Rhinolophus spp. bats in China.
Google Scholar
Forni, D., Cagliani, R., Clerici, M. & Sironi, M. Molecular evolution of human coronavirus genomes. Trends Microbiol. 25, 35–48 (2017).
Google Scholar
Zhou, P. et al. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 556, 255–258 (2018).
Google Scholar
Wang, N. et al. Serological evidence of bat SARS-related coronavirus infection in humans, China. Virol. Sin. 33, 104–107 (2018). This study provides evidence of potentially undetected spillovers of bat-associated coronaviruses in rural human populations in China.
Google Scholar
Li, H. et al. Human-animal interactions and bat coronavirus spillover potential among rural residents in southern China. Biosaf. Heal. 1, 84–90 (2019).
Woo, P. C. Y. et al. Discovery of seven novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus. J. Virol. 86, 3995–4008 (2012).
Google Scholar
Anthony, S. J. et al. Global patterns in coronavirus diversity. Virus Evol. 3, 1–15 (2017). This is a review of ecological patterns of associations between bats and coronaviruses with information up to 2014.
Li, W. et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679 (2005).
Google Scholar
Lau, S. K. P. et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl Acad. Sci. USA 102, 14040–14045 (2005).
Google Scholar
Anthony, S. et al. Coronaviruses in bats from Mexico. J. Gen. Virol. 94, 1028–1038 (2013).
Google Scholar
Latinne, A. et al. Origin and cross-species transmission of bat coronaviruses in China. Nat. Commun. 11, 4235 (2020). Using 5 years of surveillance data on coronaviruses in bats in China, the authors show that host switching is common in bat coronaviruses, particularly in Rhinolophus spp.
Google Scholar
Ithete, N. L. et al. Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa. Emerg. Infect. Dis. 19, 1697–1699 (2013).
Google Scholar
Råberg, L., Graham, A. L. & Read, A. F. Decomposing health: tolerance and resistance to parasites in animals. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364, 37–49 (2009).
Google Scholar
Schlottau, K. et al. SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: an experimental transmission study. Lancet Microbe 1, e218–e225 (2020).
Google Scholar
Munster, V. J. et al. Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis). Sci. Rep. 6, 1–10 (2016).
van Doremalen, N. et al. SARS-like coronavirus WIV1-CoV does not replicate in Egyptian fruit bats (Rousettus aegyptiacus). Viruses 10, 727 (2018).
Google Scholar
Plowright, R. K. et al. Transmission or within-host dynamics driving pulses of zoonotic viruses in reservoir–host populations. PLoS Negl. Trop. Dis. 10, 1–21 (2016).
Jeong, J. et al. Persistent infections support maintenance of a coronavirus in a population of Australian bats (Myotis macropus). Epidemiol. Infect. 145, 2053–2061 (2017).
Google Scholar
Watanabe, S. et al. Bat coronaviruses and experimental infection of bats, the Philippines. Emerg. Infect. Dis. 16, 1217–1223 (2010).
Google Scholar
Subudhi, S. et al. A persistently infecting coronavirus in hibernating Myotis lucifugus, the North American little brown bat. J. Gen. Virol. 98, 2297–2309 (2017).
Google Scholar
Widagdo, W. et al. Tissue distribution of the MERS-coronavirus receptor in bats. Sci. Rep. 7, 1–8 (2017).
Google Scholar
Banerjee, A. et al. Selection of viral variants during persistent infection of insectivorous bat cells with Middle East respiratory syndrome coronavirus. Sci. Rep. 10, 7257 (2020).
Google Scholar
Wang, M.-N. N. et al. Longitudinal surveillance of SARS-like coronaviruses in bats by quantitative real-time PCR. Virol. Sin. 31, 78–80 (2016).
Google Scholar
Ge, X. Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538 (2013).
Google Scholar
Hu, B. et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 13, 1–27 (2017).
Google Scholar
Smith, C. Australian bat coronaviruses (The University of Queensland, 2015).
Baldwin, H. J. Epidemiology and ecology of virus and host: bats and coronaviruses in Ghana, West Africa (Macquarie University & Ulm University, 2015).
Joffrin, L. et al. Bat coronavirus phylogeography in the Western Indian Ocean. Sci. Rep. 10, 1–11 (2020).
Plowright, R. K. et al. Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus). Proc. R. Soc. B Biol. Sci. 275, 861–869 (2008).
Peel, A. J. et al. Synchronous shedding of multiple bat paramyxoviruses coincides with peak periods of Hendra virus spillover. Emerg. Microbes Infect. 8, 1314–1323 (2019). This study provides evidence of co-circulation of multiple viruses in single and multispecies roosts of flying foxes, with higher diversity of viruses in mixed-species roosts.
Google Scholar
Wacharapluesadee, S. et al. Longitudinal study of age-specific pattern of coronavirus infection in Lyle’s flying fox (Pteropus lylei) in Thailand. Virol. J. 15, 1–10 (2018).
Lau, S. K. P. et al. Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events. J. Virol. 84, 2808–2819 (2010).
Google Scholar
Willoughby, A., Phelps, K. & Olival, K. A comparative analysis of viral richness and viral sharing in cave-roosting bats. Diversity 9, 35 (2017).
Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–359 (2005).
Google Scholar
Lee, K. A. Linking immune defenses and life history at the levels of the individual and the species. Integr. Comp. Biol. 46, 1000–1015 (2006).
Google Scholar
Robinson, D. P. & Klein, S. L. Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. Horm. Behav. 62, 263–271 (2012).
Google Scholar
Pauly, M. et al. Novel alphacoronaviruses and paramyxoviruses cocirculate with type 1 and severe acute respiratory system (SARS)-related betacoronaviruses in synanthropic bats of Luxembourg. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01326-17 (2017).
Google Scholar
Drexler, J. F. et al. Amplification of emerging viruses in a bat colony. Emerg. Infect. Dis. 17, 449–456 (2011).
Google Scholar
Annan, A. et al. Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe. Emerg. Infect. Dis. 19, 456–459 (2013).
Google Scholar
Montecino-Latorre, D. et al. Reproduction of East-African bats may guide risk mitigation for coronavirus spillover. One Heal. Outlook 2, 2 (2020).
Plowright, R. K., Becker, D. J., McCallum, H. & Manlove, K. R. Sampling to elucidate the dynamics of infections in reservoir hosts. Philos. Trans. R. Soc. B Biol. Sci. https://doi.org/10.1098/rstb.2018.0336 (2019).
Google Scholar
Vanalli, C. et al. Within-host mechanisms of immune regulation explain the contrasting dynamics of two helminth species in both single and dual infections. PLoS Comput. Biol. 16, 1–19 (2020).
Ge, X. Y. et al. Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft. Virol. Sin. 31, 31–40 (2016).
Google Scholar
Chu, D. K. W., Peiris, J. S. M., Chen, H., Guan, Y. & Poon, L. L. M. Genomic characterizations of bat coronaviruses (1A, 1B and HKU8) and evidence for co-infections in Miniopterus bats. J. Gen. Virol. 89, 1282–1287 (2008).
Google Scholar
Drexler, J. F. et al. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J. Virol. 84, 11336–11349 (2010).
Google Scholar
Tong, S. et al. Detection of novel SARS-like and other coronaviruses in bats from Kenya. Emerg. Infect. Dis. 15, 482–485 (2009).
Google Scholar
Wacharapluesadee, S. et al. Diversity of coronavirus in bats from eastern Thailand emerging viruses. Virol. J. 12, 1–7 (2015).
Valitutto, M. T. et al. Detection of novel coronaviruses in bats in Myanmar. PLoS ONE 15, e0230802 (2020).
Google Scholar
Anthony, S. J. et al. A strategy to estimate unknown viral diversity in mammals. mBio 4, 289 (2013).
Prada, D., Boyd, V., Baker, M. L., O’Dea, M. & Jackson, B. Viral diversity of microbats within the south west botanical province of Western Australia. Viruses 11, 1–21 (2019).
Seltmann, A. et al. Seasonal fluctuations of astrovirus, but not coronavirus shedding in bats inhabiting human-modified tropical forests. Ecohealth 14, 272–284 (2017).
Google Scholar
Chu, D. K. W., Poon, L. L. M., Guan, Y. & Peiris, J. S. M. Novel astroviruses in insectivorous Bats. J. Virol. 82, 9107–9114 (2008).
Google Scholar
Kemenesi, G. et al. Molecular survey of RNA viruses in Hungarian bats: discovering novel astroviruses, coronaviruses, and caliciviruses. Vector Borne Zoonotic Dis. 14, 846–855 (2014).
Google Scholar
Rizzo, F. et al. Coronavirus and paramyxovirus in bats from northwest Italy. BMC Vet. Res. 13, 1–11 (2017).
Paskey, A. C. et al. The temporal RNA virome patterns of a lesser dawn bat (Eonycteris spelaea) colony revealed by deep sequencing. Virus Evol. 6, 1–14 (2020).
Davy, C. M. et al. White-nose syndrome is associated with increased replication of a naturally persisting coronaviruses in bats. Sci. Rep. 8, 15508 (2018).
Google Scholar
Woo, P. C. Y., Lau, S. K. P., Huang, Y. & Yuen, K.-Y. Y. Coronavirus diversity, phylogeny and interspecies jumping. Exp. Biol. Med. 234, 1117–1127 (2009).
Google Scholar
Fehr, A. R. & Perlman, S. in Coronaviruses. Methods in Molecular Biology Vol 1282 (eds Maier, H., Bickerton, E. & Britton, P.) 1–23 (Humana Press, 2015).
Duffy, S., Shackelton, L. A. & Holmes, E. C. Rates of evolutionary change in viruses: patterns and determinants. Nat. Rev. Genet. 9, 267–276 (2008).
Google Scholar
Jenkins, G. M., Rambaut, A., Pybus, O. G. & Holmes, E. C. Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J. Mol. Evol. 54, 156–165 (2002).
Google Scholar
Eckerle, L. D. et al. Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog. 6, 1–15 (2010).
Ogando, N. S. et al. The curious case of the nidovirus exoribonuclease: its role in RNA synthesis and replication fidelity. Front. Microbiol. 10, 1–17 (2019).
Nga, P. T. et al. Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA virus genomes. PLoS Pathog. 7, e1002215 (2011).
Google Scholar
Smith, E., Blanc, H., Vignuzzi, M. & Denison, M. R. Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics. PLoS Pathog. 9, e1003565 (2013).
Google Scholar
Martin, L. B. et al. Extreme competence: keystone hosts of infections. Trends Ecol. Evol. 34, 303–314 (2019).
Google Scholar
Graham, R. L. & Baric, R. S. Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. J. Virol. 84, 3134–3146 (2010).
Google Scholar
Letko, M. et al. Adaptive evolution of MERS-CoV to species variation in DPP4. Cell Rep. 24, 1730–1737 (2018).
Google Scholar
Ermonval, M., Baychelier, F. & Tordo, N. What do we know about how hantaviruses interact with their different hosts? Viruses 8, 223 (2016).
Google Scholar
Su, S. et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 24, 490–502 (2016).
Google Scholar
Lai, M. M. et al. Recombination between nonsegmented RNA genomes of murine coronaviruses. J. Virol. 56, 449–456 (1985).
Google Scholar
Tian, P.-F. et al. Evidence of recombinant strains of porcine epidemic diarrhea virus, United States, 2013. Emerg. Infect. Dis. 20, 1731–1734 (2014).
Terada, Y. et al. Emergence of pathogenic coronaviruses in cats by homologous recombination between feline and canine coronaviruses. PLoS ONE 9, e106534 (2014).
Google Scholar
Decaro, N. et al. Recombinant canine coronaviruses related to transmissible gastroenteritis virus of swine are circulating in dogs. J. Virol. 83, 1532–1537 (2009).
Google Scholar
Zhang, Y. et al. Genotype shift in human coronavirus OC43 and emergence of a novel genotype by natural recombination. J. Infect. 70, 641–650 (2015).
Google Scholar
Pyrc, K., Berkhout, B. & van der hoek, L. in Recent Research in Development of Infection & Immunity 3rd edn 25–48 (Transworld Research Network, 2005).
Woo, P. C. Y. et al. Phylogenetic and recombination analysis of coronavirus HKU1, a novel coronavirus from patients with pneumonia. Arch. Virol. 150, 2299–2311 (2005).
Google Scholar
Zhang, X. W., Yap, Y. L. & Danchin, A. Testing the hypothesis of a recombinant origin of the SARS-associated coronavirus. Arch. Virol. 150, 1–20 (2005).
Google Scholar
Stanhope, M. J., Brown, J. R. & Amrine-Madsen, H. Evidence from the evolutionary analysis of nucleotide sequences for a recombinant history of SARS-CoV. Infect. Genet. Evol. 4, 15–19 (2004).
Google Scholar
Wang, Y. et al. Origin and possible genetic recombination of the middle east respiratory syndrome coronavirus from the first imported case in China: phylogenetics and coalescence analysis. MBio 6, 1–6 (2015).
Huang, C. et al. A bat-derived putative cross-family recombinant coronavirus with a reovirus gene. PLoS Pathog. 12, 1–25 (2016). This study provides evidence of cross-family recombination between coronaviruses and reoviruses.
Drexler, J. F., Corman, V. M. & Drosten, C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antivir. Res. 101, 45–56 (2014).
Google Scholar
Cui, J. et al. Evolutionary relationships between bat coronaviruses and their hosts. Emerg. Infect. Dis. 13, 1526–1532 (2007).
Google Scholar
Davies, N. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Sci 372, eabg3055 (2021).
Google Scholar
Reguera, J., Mudgal, G., Santiago, C. & Casasnovas, J. M. A structural view of coronavirus-receptor interactions. Virus Res. 194, 3–15 (2014).
Google Scholar
Lim, Y., Ng, Y., Tam, J. & Liu, D. Human coronaviruses: a review of virus–host interactions. Diseases 4, 26 (2016).
Masters, P. S. & Perlman, S. Coronaviridae. Fields Virol. 1, 825–858 (2013).
Letko, M., Marzi, A. & Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 5, 562–569 (2020). This study uses a functional viromics platform to rapidly characterize the zoonotic potential of new coronaviruses on the basis of genome sequences.
Google Scholar
van Doremalen, N. et al. Host species restriction of middle east respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4. J. Virol. 88, 9220–9232 (2014).
Google Scholar
Conceicao, C. et al. The SARS-CoV-2 spike protein has a broad tropism for mammalian ACE2 proteins. PLoS Biol. 18, e3001016 (2020).
Google Scholar
Li, W. et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 24, 1634–1643 (2005).
Google Scholar
Damas, J. et al. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc. Natl Acad. Sci. USA 117, 22311–22322 (2020).
Google Scholar
Shi, J. et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science 1020, 1016–1020 (2020).
Oude Munnink, B. B. et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371, 172–177 (2021). The study provides evidence of spillback of SARS-CoV-2 into mink populations, rapid and widespread transmission, and seeding of mink-associated genetic variants back into humans.
Google Scholar
Hoffmann, M. et al. Differential sensitivity of bat cells to infection by enveloped RNA viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses. PLoS ONE 8, e72942 (2013).
Google Scholar
Li, W. et al. Animal origins of the severe acute respiratory syndrome coronavirus: insight from ACE2-S-protein interactions. J. Virol. 80, 4211–4219 (2006).
Google Scholar
Hou, Y. et al. Angiotensin-converting enzyme 2 (ACE2) proteins of different bat species confer variable susceptibility to SARS-CoV entry. Arch. Virol. 155, 1563–1569 (2010).
Google Scholar
Boni, M. F. et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat. Microbiol. 5, 1408–1417 (2020). This study provids phylogenetic evidence that suggests that the ancestral lineages from which SARS-CoV-2 may have originated have circulated undetected in bats for decades.
Google Scholar
Wells, H. L. et al. The evolutionary history of ACE2 usage within the coronavirus subgenus Sarbecovirus. Virus Evol. 7, 1–22 (2021).
Urbanowicz, R. A. et al. Human adaptation of Ebola virus during the West African outbreak. Cell 167, 1079–1087.e5 (2016).
Google Scholar
Gupta, A. et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 26, 1017–1032 (2020).
Google Scholar
Hamming, I. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 203, 631–637 (2004).
Google Scholar
Lam, T. T. Y. et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 583, 282–285 (2020).
Google Scholar
Martina, B. E. E. et al. SARS virus infection of cats and ferrets. Nature 425, 915 (2003).
Google Scholar
Munster, V. J. et al. Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature 585, 268–272 (2020).
Google Scholar
Hou, Y. J. et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182, 429–446.e14 (2020).
Google Scholar
Menachery, V. D. et al. Trypsin treatment unlocks barrier for zoonotic bat coronavirus infection. J. Virol. 94, 1–15 (2019).
Qian, Z., Dominguez, S. R. & Holmes, K. V. Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation. PLoS ONE 8, 1–12 (2013).
Belouzard, S., Chu, V. C. & Whittaker, G. R. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc. Natl Acad. Sci. USA 106, 5871–5876 (2009).
Google Scholar
Barlan, A. et al. Receptor variation and susceptibility to middle east respiratory syndrome coronavirus infection. J. Virol. 88, 4953–4961 (2014).
Google Scholar
Zheng, Y. et al. Lysosomal proteases are a determinant of coronavirus tropism. J. Virol. 92, 1–14 (2018).
Bertram, S. et al. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J. Virol. 85, 13363–13372 (2011).
Google Scholar
Matsuyama, S., Ujike, M., Morikawa, S., Tashiro, M. & Taguchi, F. Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proc. Natl Acad. Sci. USA 102, 12543–12547 (2005).
Google Scholar
Yang, Y. et al. Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus. Proc. Natl Acad. Sci. USA 111, 12516–12521 (2014).
Google Scholar
Wacharapluesadee, S. et al. Group C betacoronavirus in bat guano fertilizer, Thailand. Emerg. Infect. Dis. 19, 1349–1351 (2013).
Google Scholar
Luk, H. K. H., Li, X., Fung, J., Lau, S. K. P. & Woo, P. C. Y. Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infect. Genet. Evol. 71, 21–30 (2019).
Google Scholar
Wu, K., Peng, G., Wilken, M., Geraghty, R. J. & Li, F. Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus. J. Biol. Chem. 287, 8904–8911 (2012).
Google Scholar
Daszak, P., Olival, K. J. & Li, H. A strategy to prevent future epidemics similar to the 2019-nCoV outbreak. Biosaf. Heal. 2, 6–8 (2020).
Tidemann, C. & Vardon, M. Pests, pestilence, pollen and pot roasts: the need for community based management of flying foxes in Australia. Aust. Biol. 10, 77–83 (1997).
Mickleburgh, S., Waylen, K. & Racey, P. Bats as bushmeat: a global review. Oryx 43, 217–234 (2009).
Tuttle, M. D. & Moreno, A. Cave-Dwelling Bats of Northern Mexico: Their Value and Conservation Needs (Bat Conservation International, 2005).
Rulli, M. C., D’Odorico, P., Galli, N. & Hayman, D. T. S. Land-use change and the livestock revolution increase the risk of zoonotic coronavirus transmission from rhinolophid bats. Nat. Food https://doi.org/10.1038/s43016-021-00285-x (2021).
Google Scholar
Mckee, C. D., Islam, A., Luby, S. P., Salje, H. & Hudson, P. J. The ecology of Nipah virus in Bangladesh: a nexus of land use change and opportunistic feeding behavior in bats. Viruses 13, 169 (2020).
Kessler, M. K. et al. Changing resource landscapes and spillover of henipaviruses. Ann. N. Y. Acad. Sci. https://doi.org/10.1111/nyas.13910 (2018).
Google Scholar
Dighe, A., Jombart, T., Van Kerkhove, M. D. & Ferguson, N. A systematic review of MERS-CoV seroprevalence and RNA prevalence in dromedary camels: implications for animal vaccination. Epidemics 29, 100350 (2019).
Google Scholar
Hegde, S. T. et al. Using healthcare-seeking behaviour to estimate the number of Nipah outbreaks missed by hospital-based surveillance in Bangladesh. Int. J. Epidemiol. 48, 1219–1227 (2019).
Google Scholar
Glennon, E. E., Jephcott, F. L., Restif, O. & Wood, J. L. N. Estimating undetected Ebola spillovers. PLoS Negl. Trop. Dis. 13, 1–10 (2019).
Matson, M. J., Chertow, D. S. & Munster, V. J. Delayed recognition of Ebola virus disease is associated with longer and larger outbreaks. Emerg. Microbes Infect. 9, 291–301 (2020).
Google Scholar
Zheng, B. J. et al. SARS-related virus predating SARS outbreak, Hong Kong. Emerg. Infect. Dis. 10, 176–178 (2004). This study provides serological evidence that populations in Hong Kong sampled in 2001 may have been exposed to SARS-CoV or related viruses in bats or other animals before the first SARS outbreaks.
Google Scholar
Yu, S. et al. Retrospective serological investigation of severe acute respiratory syndrome coronavirus antibodies in recruits from mainland China. Clin. Diagn. Lab. Immunol. 12, 552–554 (2005).
Google Scholar
Lloyd-Smith, J. O. et al. Epidemic dynamics at the human-animal interface. Science 326, 1362–1367 (2009).
Google Scholar
Plowright, R. K. et al. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15, 502–510 (2017). This study formulates a conceptual model for the multiple layers of ecological and cellular barriers that affect the likelihood of pathogen spillover from animals.
Google Scholar
Klompus, S. et al. Cross-reactive antibodies against human coronaviruses and the animal coronavirome suggest diagnostics for future zoonotic spillovers. Sci. Immunol. 6, eabe9950 (2021).
Google Scholar
Field, H. E. Hendra virus ecology and transmission. Curr. Opin. Virol. 16, 120–125 (2016).
Google Scholar
Chua, K. B. Nipah virus outbreak in Malaysia. J. Clin. Virol. 26, 265–275 (2003).
Google Scholar
Azhar, E. I. et al. Evidence for camel-to-human transmission of MERS coronavirus. N. Engl. J. Med. 370, 2499–2505 (2014).
Google Scholar
Memish, Z. A. et al. Respiratory tract samples, viral load, and genome fraction yield in patients with middle east respiratory syndrome. J. Infect. Dis. 210, 1590–1594 (2014).
Google Scholar
Buchholz, U. et al. Contact investigation of a case of human novel coronavirus infection treated in a German hospital, October-November 2012. Eurosurveillance 18, 1–7 (2013).
Chu, D. K. W. et al. MERS coronaviruses in dromedary camels, Egypt. Emerg. Infect. Dis. 20, 1049–1053 (2014).
Google Scholar
Zhou, H. et al. Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell 184, 4380–4391.e14 (2021). This study reports the discovery of additional coronaviruses related to SARS-CoV-2 in Rhinolophus spp. and use of ecological modelling to highlight areas of southern China and South-East Asia as hotspots of Rhinolophus species diversity.
Google Scholar
Larsen, H. D. et al. Preliminary report of an outbreak of SARS-CoV-2 in mink and mink farmers associated with community spread, Denmark, June to November 2020. Eur. Surveill. 26, 2100009 (2021).
Google Scholar
Bertzbach, L. D. et al. SARS-CoV-2 infection of Chinese hamsters (Cricetulus griseus) reproduces COVID-19 pneumonia in a well-established small animal model. Transbound. Emerg. Dis. 68, 1075–1079 (2021).
Google Scholar
Fagre, A. et al. SARS-CoV-2 infection, neuropathogenesis and transmission among deer mice: Implications for spillback to New World rodents. PLoS Pathog. 17, e1009585 (2021).
Google Scholar
Imai, M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc. Natl Acad. Sci. USA 117, 16587–16595 (2020).
Google Scholar
Sia, S. F. et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583, 834–838 (2020).
Google Scholar
Halfmann, P. J. et al. Transmission of SARS-CoV-2 in domestic cats. N. Engl. J. Med. 383, 592–594 (2020).
Google Scholar
Griffin, B. D. et al. SARS-CoV-2 infection and transmission in the North American deer mouse. Nat. Commun. 12, 1–10 (2021).
Palmer, M. V. et al. Susceptibility of white-tailed deer (Odocoileus virginianus) to SARS-CoV-2. J. Virol. 95, e00083–21 (2021).
Google Scholar
Plowright, R. K. & Hudson, P. J. From protein to pandemic: the transdisciplinary approach needed to prevent spillover and the next pandemic. Viruses 13, 1298 (2021).
Google Scholar
Obameso, J. O. et al. The persistent prevalence and evolution of cross-family recombinant coronavirus GCCDC1 among a bat population: a two-year follow-up. Sci. China Life Sci. 60, 1357–1363 (2017). This study provides evidence of coronavirus evolution in a longitudinally sampled population of bats.
Google Scholar
Lazov, C. et al. Detection and characterization of distinct alphacoronaviruses in five different bat species in Denmark. Viruses 10, 486 (2018).
Google Scholar
Hu, D. et al. Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats. Emerg. Microbes Infect. 7, 1–10 (2018).
Pepin, K. M., Lass, S., Pulliam, J. R. C., Read, A. F. & Lloyd-Smith, J. O. Identifying genetic markers of adaptation for surveillance of viral host jumps. Nat. Rev. Microbiol. 8, 802–813 (2010).
Google Scholar
Hemida, M. G. et al. Coronavirus infections in horses in Saudi Arabia and Oman. Transbound. Emerg. Dis. 64, 2093–2103 (2017).
Google Scholar
Zhuang, Q. et al. Surveillance and taxonomic analysis of the coronavirus dominant in pigeons in China. Transbound. Emerg. Dis. 67, 1981–1990 (2020).
Google Scholar
O’Brien, S. J. et al. Genetic basis for species vulnerability in the cheetah. Science 227, 1428–1434 (1985).
Google Scholar
Herrewegh, A. A. P. M., Smeenk, I., Horzinek, M. C., Rottier, P. J. M. & de Groot, R. J. Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J. Virol. 72, 4508–4514 (1998).
Google Scholar
Source: Ecology - nature.com