in

Ecology, evolution and spillover of coronaviruses from bats

[adace-ad id="91168"]
  • 1.

    Letko, M., Seifert, S. N., Olival, K. J., Plowright, R. K. & Munster, V. J. Bat-borne virus diversity, spillover and emergence. Nat. Rev. Microbiol. 18, 461–471 (2020). This is a review of the overall diversity of bat-borne coronaviruses and research agenda for enhanced characterization of their zoonotic and pandemic potential.

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Dobson, B. A. P. et al. Ecology and economics for pandemic prevention. Science 369, 379–381 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Plowright, R. K. et al. Land use-induced spillover: a call to action to safeguard environmental, animal, and human health. Lancet Planet. Heal. 5, e237–e245 (2021).

    Google Scholar 

  • 4.

    Shivaprakash, K. N., Sen, S., Paul, S., Kiesecker, J. M. & Bawa, K. S. Mammals, wildlife trade, and the next global pandemic. Curr. Biol. 31, 3671–3677.e3 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Huong, N. Q. et al. Coronavirus testing indicates transmission risk increases along wildlife supply chains for human consumption in Viet Nam, 2013–2014. PLoS ONE 15, e0237129 (2020). This study provides evidence that coronavirus detection increases along the supply chain of rodents destined for human consumption.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Xiao, X., Newman, C., Buesching, C. D., Macdonald, D. W. & Zhou, Z.-M. Animal sales from Wuhan wet markets immediately prior to the COVID-19 pandemic. Sci. Rep. 11, 11898 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Chen, L., Liu, B., Yang, J. & Jin, Q. DBatVir: the database of bat-associated viruses. Database 2014, 1–7 (2014).

    Google Scholar 

  • 8.

    Tao, Y. et al. Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history. J. Virol. 91, 1–16 (2017).

    CAS 

    Google Scholar 

  • 9.

    Cui, J., Li, F. & Shi, Z. L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020). This is one of the first studies to discover viruses related to SARS-CoV-2 in wild Rhinolophus spp. bats in China.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Forni, D., Cagliani, R., Clerici, M. & Sironi, M. Molecular evolution of human coronavirus genomes. Trends Microbiol. 25, 35–48 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Zhou, P. et al. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 556, 255–258 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Wang, N. et al. Serological evidence of bat SARS-related coronavirus infection in humans, China. Virol. Sin. 33, 104–107 (2018). This study provides evidence of potentially undetected spillovers of bat-associated coronaviruses in rural human populations in China.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Li, H. et al. Human-animal interactions and bat coronavirus spillover potential among rural residents in southern China. Biosaf. Heal. 1, 84–90 (2019).

    Google Scholar 

  • 15.

    Woo, P. C. Y. et al. Discovery of seven novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus. J. Virol. 86, 3995–4008 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Anthony, S. J. et al. Global patterns in coronavirus diversity. Virus Evol. 3, 1–15 (2017). This is a review of ecological patterns of associations between bats and coronaviruses with information up to 2014.

    Google Scholar 

  • 17.

    Li, W. et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Lau, S. K. P. et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl Acad. Sci. USA 102, 14040–14045 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Anthony, S. et al. Coronaviruses in bats from Mexico. J. Gen. Virol. 94, 1028–1038 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Latinne, A. et al. Origin and cross-species transmission of bat coronaviruses in China. Nat. Commun. 11, 4235 (2020). Using 5 years of surveillance data on coronaviruses in bats in China, the authors show that host switching is common in bat coronaviruses, particularly in Rhinolophus spp.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Ithete, N. L. et al. Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa. Emerg. Infect. Dis. 19, 1697–1699 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Råberg, L., Graham, A. L. & Read, A. F. Decomposing health: tolerance and resistance to parasites in animals. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364, 37–49 (2009).

    PubMed 

    Google Scholar 

  • 23.

    Schlottau, K. et al. SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: an experimental transmission study. Lancet Microbe 1, e218–e225 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Munster, V. J. et al. Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis). Sci. Rep. 6, 1–10 (2016).

    Google Scholar 

  • 25.

    van Doremalen, N. et al. SARS-like coronavirus WIV1-CoV does not replicate in Egyptian fruit bats (Rousettus aegyptiacus). Viruses 10, 727 (2018).

    PubMed Central 

    Google Scholar 

  • 26.

    Plowright, R. K. et al. Transmission or within-host dynamics driving pulses of zoonotic viruses in reservoir–host populations. PLoS Negl. Trop. Dis. 10, 1–21 (2016).

    Google Scholar 

  • 27.

    Jeong, J. et al. Persistent infections support maintenance of a coronavirus in a population of Australian bats (Myotis macropus). Epidemiol. Infect. 145, 2053–2061 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Watanabe, S. et al. Bat coronaviruses and experimental infection of bats, the Philippines. Emerg. Infect. Dis. 16, 1217–1223 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Subudhi, S. et al. A persistently infecting coronavirus in hibernating Myotis lucifugus, the North American little brown bat. J. Gen. Virol. 98, 2297–2309 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Widagdo, W. et al. Tissue distribution of the MERS-coronavirus receptor in bats. Sci. Rep. 7, 1–8 (2017).

    CAS 

    Google Scholar 

  • 31.

    Banerjee, A. et al. Selection of viral variants during persistent infection of insectivorous bat cells with Middle East respiratory syndrome coronavirus. Sci. Rep. 10, 7257 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Wang, M.-N. N. et al. Longitudinal surveillance of SARS-like coronaviruses in bats by quantitative real-time PCR. Virol. Sin. 31, 78–80 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Ge, X. Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Hu, B. et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 13, 1–27 (2017).

    CAS 

    Google Scholar 

  • 35.

    Smith, C. Australian bat coronaviruses (The University of Queensland, 2015).

  • 36.

    Baldwin, H. J. Epidemiology and ecology of virus and host: bats and coronaviruses in Ghana, West Africa (Macquarie University & Ulm University, 2015).

  • 37.

    Joffrin, L. et al. Bat coronavirus phylogeography in the Western Indian Ocean. Sci. Rep. 10, 1–11 (2020).

    Google Scholar 

  • 38.

    Plowright, R. K. et al. Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus). Proc. R. Soc. B Biol. Sci. 275, 861–869 (2008).

    Google Scholar 

  • 39.

    Peel, A. J. et al. Synchronous shedding of multiple bat paramyxoviruses coincides with peak periods of Hendra virus spillover. Emerg. Microbes Infect. 8, 1314–1323 (2019). This study provides evidence of co-circulation of multiple viruses in single and multispecies roosts of flying foxes, with higher diversity of viruses in mixed-species roosts.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Wacharapluesadee, S. et al. Longitudinal study of age-specific pattern of coronavirus infection in Lyle’s flying fox (Pteropus lylei) in Thailand. Virol. J. 15, 1–10 (2018).

    Google Scholar 

  • 41.

    Lau, S. K. P. et al. Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events. J. Virol. 84, 2808–2819 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Willoughby, A., Phelps, K. & Olival, K. A comparative analysis of viral richness and viral sharing in cave-roosting bats. Diversity 9, 35 (2017).

    Google Scholar 

  • 43.

    Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–359 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Lee, K. A. Linking immune defenses and life history at the levels of the individual and the species. Integr. Comp. Biol. 46, 1000–1015 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Robinson, D. P. & Klein, S. L. Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. Horm. Behav. 62, 263–271 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Pauly, M. et al. Novel alphacoronaviruses and paramyxoviruses cocirculate with type 1 and severe acute respiratory system (SARS)-related betacoronaviruses in synanthropic bats of Luxembourg. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01326-17 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Drexler, J. F. et al. Amplification of emerging viruses in a bat colony. Emerg. Infect. Dis. 17, 449–456 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Annan, A. et al. Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe. Emerg. Infect. Dis. 19, 456–459 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Montecino-Latorre, D. et al. Reproduction of East-African bats may guide risk mitigation for coronavirus spillover. One Heal. Outlook 2, 2 (2020).

    Google Scholar 

  • 50.

    Plowright, R. K., Becker, D. J., McCallum, H. & Manlove, K. R. Sampling to elucidate the dynamics of infections in reservoir hosts. Philos. Trans. R. Soc. B Biol. Sci. https://doi.org/10.1098/rstb.2018.0336 (2019).

    Article 

    Google Scholar 

  • 51.

    Vanalli, C. et al. Within-host mechanisms of immune regulation explain the contrasting dynamics of two helminth species in both single and dual infections. PLoS Comput. Biol. 16, 1–19 (2020).

    Google Scholar 

  • 52.

    Ge, X. Y. et al. Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft. Virol. Sin. 31, 31–40 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Chu, D. K. W., Peiris, J. S. M., Chen, H., Guan, Y. & Poon, L. L. M. Genomic characterizations of bat coronaviruses (1A, 1B and HKU8) and evidence for co-infections in Miniopterus bats. J. Gen. Virol. 89, 1282–1287 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Drexler, J. F. et al. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J. Virol. 84, 11336–11349 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Tong, S. et al. Detection of novel SARS-like and other coronaviruses in bats from Kenya. Emerg. Infect. Dis. 15, 482–485 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Wacharapluesadee, S. et al. Diversity of coronavirus in bats from eastern Thailand emerging viruses. Virol. J. 12, 1–7 (2015).

    Google Scholar 

  • 57.

    Valitutto, M. T. et al. Detection of novel coronaviruses in bats in Myanmar. PLoS ONE 15, e0230802 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Anthony, S. J. et al. A strategy to estimate unknown viral diversity in mammals. mBio 4, 289 (2013).

    Google Scholar 

  • 59.

    Prada, D., Boyd, V., Baker, M. L., O’Dea, M. & Jackson, B. Viral diversity of microbats within the south west botanical province of Western Australia. Viruses 11, 1–21 (2019).

    Google Scholar 

  • 60.

    Seltmann, A. et al. Seasonal fluctuations of astrovirus, but not coronavirus shedding in bats inhabiting human-modified tropical forests. Ecohealth 14, 272–284 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Chu, D. K. W., Poon, L. L. M., Guan, Y. & Peiris, J. S. M. Novel astroviruses in insectivorous Bats. J. Virol. 82, 9107–9114 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Kemenesi, G. et al. Molecular survey of RNA viruses in Hungarian bats: discovering novel astroviruses, coronaviruses, and caliciviruses. Vector Borne Zoonotic Dis. 14, 846–855 (2014).

    PubMed 

    Google Scholar 

  • 63.

    Rizzo, F. et al. Coronavirus and paramyxovirus in bats from northwest Italy. BMC Vet. Res. 13, 1–11 (2017).

    Google Scholar 

  • 64.

    Paskey, A. C. et al. The temporal RNA virome patterns of a lesser dawn bat (Eonycteris spelaea) colony revealed by deep sequencing. Virus Evol. 6, 1–14 (2020).

    Google Scholar 

  • 65.

    Davy, C. M. et al. White-nose syndrome is associated with increased replication of a naturally persisting coronaviruses in bats. Sci. Rep. 8, 15508 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Woo, P. C. Y., Lau, S. K. P., Huang, Y. & Yuen, K.-Y. Y. Coronavirus diversity, phylogeny and interspecies jumping. Exp. Biol. Med. 234, 1117–1127 (2009).

    CAS 

    Google Scholar 

  • 67.

    Fehr, A. R. & Perlman, S. in Coronaviruses. Methods in Molecular Biology Vol 1282 (eds Maier, H., Bickerton, E. & Britton, P.) 1–23 (Humana Press, 2015).

  • 68.

    Duffy, S., Shackelton, L. A. & Holmes, E. C. Rates of evolutionary change in viruses: patterns and determinants. Nat. Rev. Genet. 9, 267–276 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 69.

    Jenkins, G. M., Rambaut, A., Pybus, O. G. & Holmes, E. C. Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J. Mol. Evol. 54, 156–165 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 70.

    Eckerle, L. D. et al. Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog. 6, 1–15 (2010).

    Google Scholar 

  • 71.

    Ogando, N. S. et al. The curious case of the nidovirus exoribonuclease: its role in RNA synthesis and replication fidelity. Front. Microbiol. 10, 1–17 (2019).

    Google Scholar 

  • 72.

    Nga, P. T. et al. Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA virus genomes. PLoS Pathog. 7, e1002215 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Smith, E., Blanc, H., Vignuzzi, M. & Denison, M. R. Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics. PLoS Pathog. 9, e1003565 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Martin, L. B. et al. Extreme competence: keystone hosts of infections. Trends Ecol. Evol. 34, 303–314 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Graham, R. L. & Baric, R. S. Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. J. Virol. 84, 3134–3146 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 76.

    Letko, M. et al. Adaptive evolution of MERS-CoV to species variation in DPP4. Cell Rep. 24, 1730–1737 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Ermonval, M., Baychelier, F. & Tordo, N. What do we know about how hantaviruses interact with their different hosts? Viruses 8, 223 (2016).

    PubMed Central 

    Google Scholar 

  • 78.

    Su, S. et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 24, 490–502 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Lai, M. M. et al. Recombination between nonsegmented RNA genomes of murine coronaviruses. J. Virol. 56, 449–456 (1985).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Tian, P.-F. et al. Evidence of recombinant strains of porcine epidemic diarrhea virus, United States, 2013. Emerg. Infect. Dis. 20, 1731–1734 (2014).

    Google Scholar 

  • 81.

    Terada, Y. et al. Emergence of pathogenic coronaviruses in cats by homologous recombination between feline and canine coronaviruses. PLoS ONE 9, e106534 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    Decaro, N. et al. Recombinant canine coronaviruses related to transmissible gastroenteritis virus of swine are circulating in dogs. J. Virol. 83, 1532–1537 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 83.

    Zhang, Y. et al. Genotype shift in human coronavirus OC43 and emergence of a novel genotype by natural recombination. J. Infect. 70, 641–650 (2015).

    PubMed 

    Google Scholar 

  • 84.

    Pyrc, K., Berkhout, B. & van der hoek, L. in Recent Research in Development of Infection & Immunity 3rd edn 25–48 (Transworld Research Network, 2005).

  • 85.

    Woo, P. C. Y. et al. Phylogenetic and recombination analysis of coronavirus HKU1, a novel coronavirus from patients with pneumonia. Arch. Virol. 150, 2299–2311 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 86.

    Zhang, X. W., Yap, Y. L. & Danchin, A. Testing the hypothesis of a recombinant origin of the SARS-associated coronavirus. Arch. Virol. 150, 1–20 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 87.

    Stanhope, M. J., Brown, J. R. & Amrine-Madsen, H. Evidence from the evolutionary analysis of nucleotide sequences for a recombinant history of SARS-CoV. Infect. Genet. Evol. 4, 15–19 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 88.

    Wang, Y. et al. Origin and possible genetic recombination of the middle east respiratory syndrome coronavirus from the first imported case in China: phylogenetics and coalescence analysis. MBio 6, 1–6 (2015).

    Google Scholar 

  • 89.

    Huang, C. et al. A bat-derived putative cross-family recombinant coronavirus with a reovirus gene. PLoS Pathog. 12, 1–25 (2016). This study provides evidence of cross-family recombination between coronaviruses and reoviruses.

    Google Scholar 

  • 90.

    Drexler, J. F., Corman, V. M. & Drosten, C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antivir. Res. 101, 45–56 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 91.

    Cui, J. et al. Evolutionary relationships between bat coronaviruses and their hosts. Emerg. Infect. Dis. 13, 1526–1532 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 92.

    Davies, N. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Sci 372, eabg3055 (2021).

    CAS 

    Google Scholar 

  • 93.

    Reguera, J., Mudgal, G., Santiago, C. & Casasnovas, J. M. A structural view of coronavirus-receptor interactions. Virus Res. 194, 3–15 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 94.

    Lim, Y., Ng, Y., Tam, J. & Liu, D. Human coronaviruses: a review of virus–host interactions. Diseases 4, 26 (2016).

    Google Scholar 

  • 95.

    Masters, P. S. & Perlman, S. Coronaviridae. Fields Virol. 1, 825–858 (2013).

    Google Scholar 

  • 96.

    Letko, M., Marzi, A. & Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 5, 562–569 (2020). This study uses a functional viromics platform to rapidly characterize the zoonotic potential of new coronaviruses on the basis of genome sequences.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 97.

    van Doremalen, N. et al. Host species restriction of middle east respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4. J. Virol. 88, 9220–9232 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 98.

    Conceicao, C. et al. The SARS-CoV-2 spike protein has a broad tropism for mammalian ACE2 proteins. PLoS Biol. 18, e3001016 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 99.

    Li, W. et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 24, 1634–1643 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 100.

    Damas, J. et al. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc. Natl Acad. Sci. USA 117, 22311–22322 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 101.

    Shi, J. et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science 1020, 1016–1020 (2020).

    Google Scholar 

  • 102.

    Oude Munnink, B. B. et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371, 172–177 (2021). The study provides evidence of spillback of SARS-CoV-2 into mink populations, rapid and widespread transmission, and seeding of mink-associated genetic variants back into humans.

    CAS 
    PubMed 

    Google Scholar 

  • 103.

    Hoffmann, M. et al. Differential sensitivity of bat cells to infection by enveloped RNA viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses. PLoS ONE 8, e72942 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 104.

    Li, W. et al. Animal origins of the severe acute respiratory syndrome coronavirus: insight from ACE2-S-protein interactions. J. Virol. 80, 4211–4219 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 105.

    Hou, Y. et al. Angiotensin-converting enzyme 2 (ACE2) proteins of different bat species confer variable susceptibility to SARS-CoV entry. Arch. Virol. 155, 1563–1569 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 106.

    Boni, M. F. et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat. Microbiol. 5, 1408–1417 (2020). This study provids phylogenetic evidence that suggests that the ancestral lineages from which SARS-CoV-2 may have originated have circulated undetected in bats for decades.

    CAS 
    PubMed 

    Google Scholar 

  • 107.

    Wells, H. L. et al. The evolutionary history of ACE2 usage within the coronavirus subgenus Sarbecovirus. Virus Evol. 7, 1–22 (2021).

    Google Scholar 

  • 108.

    Urbanowicz, R. A. et al. Human adaptation of Ebola virus during the West African outbreak. Cell 167, 1079–1087.e5 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 109.

    Gupta, A. et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 26, 1017–1032 (2020).

    CAS 

    Google Scholar 

  • 110.

    Hamming, I. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 203, 631–637 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 111.

    Lam, T. T. Y. et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 583, 282–285 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 112.

    Martina, B. E. E. et al. SARS virus infection of cats and ferrets. Nature 425, 915 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 113.

    Munster, V. J. et al. Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature 585, 268–272 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 114.

    Hou, Y. J. et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182, 429–446.e14 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 115.

    Menachery, V. D. et al. Trypsin treatment unlocks barrier for zoonotic bat coronavirus infection. J. Virol. 94, 1–15 (2019).

    Google Scholar 

  • 116.

    Qian, Z., Dominguez, S. R. & Holmes, K. V. Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation. PLoS ONE 8, 1–12 (2013).

    Google Scholar 

  • 117.

    Belouzard, S., Chu, V. C. & Whittaker, G. R. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc. Natl Acad. Sci. USA 106, 5871–5876 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 118.

    Barlan, A. et al. Receptor variation and susceptibility to middle east respiratory syndrome coronavirus infection. J. Virol. 88, 4953–4961 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 119.

    Zheng, Y. et al. Lysosomal proteases are a determinant of coronavirus tropism. J. Virol. 92, 1–14 (2018).

    Google Scholar 

  • 120.

    Bertram, S. et al. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J. Virol. 85, 13363–13372 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 121.

    Matsuyama, S., Ujike, M., Morikawa, S., Tashiro, M. & Taguchi, F. Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proc. Natl Acad. Sci. USA 102, 12543–12547 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 122.

    Yang, Y. et al. Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus. Proc. Natl Acad. Sci. USA 111, 12516–12521 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 123.

    Wacharapluesadee, S. et al. Group C betacoronavirus in bat guano fertilizer, Thailand. Emerg. Infect. Dis. 19, 1349–1351 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 124.

    Luk, H. K. H., Li, X., Fung, J., Lau, S. K. P. & Woo, P. C. Y. Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infect. Genet. Evol. 71, 21–30 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 125.

    Wu, K., Peng, G., Wilken, M., Geraghty, R. J. & Li, F. Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus. J. Biol. Chem. 287, 8904–8911 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 126.

    Daszak, P., Olival, K. J. & Li, H. A strategy to prevent future epidemics similar to the 2019-nCoV outbreak. Biosaf. Heal. 2, 6–8 (2020).

    Google Scholar 

  • 127.

    Tidemann, C. & Vardon, M. Pests, pestilence, pollen and pot roasts: the need for community based management of flying foxes in Australia. Aust. Biol. 10, 77–83 (1997).

    Google Scholar 

  • 128.

    Mickleburgh, S., Waylen, K. & Racey, P. Bats as bushmeat: a global review. Oryx 43, 217–234 (2009).

    Google Scholar 

  • 129.

    Tuttle, M. D. & Moreno, A. Cave-Dwelling Bats of Northern Mexico: Their Value and Conservation Needs (Bat Conservation International, 2005).

  • 130.

    Rulli, M. C., D’Odorico, P., Galli, N. & Hayman, D. T. S. Land-use change and the livestock revolution increase the risk of zoonotic coronavirus transmission from rhinolophid bats. Nat. Food https://doi.org/10.1038/s43016-021-00285-x (2021).

    Article 

    Google Scholar 

  • 131.

    Mckee, C. D., Islam, A., Luby, S. P., Salje, H. & Hudson, P. J. The ecology of Nipah virus in Bangladesh: a nexus of land use change and opportunistic feeding behavior in bats. Viruses 13, 169 (2020).

    Google Scholar 

  • 132.

    Kessler, M. K. et al. Changing resource landscapes and spillover of henipaviruses. Ann. N. Y. Acad. Sci. https://doi.org/10.1111/nyas.13910 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 133.

    Dighe, A., Jombart, T., Van Kerkhove, M. D. & Ferguson, N. A systematic review of MERS-CoV seroprevalence and RNA prevalence in dromedary camels: implications for animal vaccination. Epidemics 29, 100350 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 134.

    Hegde, S. T. et al. Using healthcare-seeking behaviour to estimate the number of Nipah outbreaks missed by hospital-based surveillance in Bangladesh. Int. J. Epidemiol. 48, 1219–1227 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 135.

    Glennon, E. E., Jephcott, F. L., Restif, O. & Wood, J. L. N. Estimating undetected Ebola spillovers. PLoS Negl. Trop. Dis. 13, 1–10 (2019).

    Google Scholar 

  • 136.

    Matson, M. J., Chertow, D. S. & Munster, V. J. Delayed recognition of Ebola virus disease is associated with longer and larger outbreaks. Emerg. Microbes Infect. 9, 291–301 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 137.

    Zheng, B. J. et al. SARS-related virus predating SARS outbreak, Hong Kong. Emerg. Infect. Dis. 10, 176–178 (2004). This study provides serological evidence that populations in Hong Kong sampled in 2001 may have been exposed to SARS-CoV or related viruses in bats or other animals before the first SARS outbreaks.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 138.

    Yu, S. et al. Retrospective serological investigation of severe acute respiratory syndrome coronavirus antibodies in recruits from mainland China. Clin. Diagn. Lab. Immunol. 12, 552–554 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 139.

    Lloyd-Smith, J. O. et al. Epidemic dynamics at the human-animal interface. Science 326, 1362–1367 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 140.

    Plowright, R. K. et al. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15, 502–510 (2017). This study formulates a conceptual model for the multiple layers of ecological and cellular barriers that affect the likelihood of pathogen spillover from animals.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 141.

    Klompus, S. et al. Cross-reactive antibodies against human coronaviruses and the animal coronavirome suggest diagnostics for future zoonotic spillovers. Sci. Immunol. 6, eabe9950 (2021).

    PubMed 

    Google Scholar 

  • 142.

    Field, H. E. Hendra virus ecology and transmission. Curr. Opin. Virol. 16, 120–125 (2016).

    PubMed 

    Google Scholar 

  • 143.

    Chua, K. B. Nipah virus outbreak in Malaysia. J. Clin. Virol. 26, 265–275 (2003).

    PubMed 

    Google Scholar 

  • 144.

    Azhar, E. I. et al. Evidence for camel-to-human transmission of MERS coronavirus. N. Engl. J. Med. 370, 2499–2505 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 145.

    Memish, Z. A. et al. Respiratory tract samples, viral load, and genome fraction yield in patients with middle east respiratory syndrome. J. Infect. Dis. 210, 1590–1594 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 146.

    Buchholz, U. et al. Contact investigation of a case of human novel coronavirus infection treated in a German hospital, October-November 2012. Eurosurveillance 18, 1–7 (2013).

    Google Scholar 

  • 147.

    Chu, D. K. W. et al. MERS coronaviruses in dromedary camels, Egypt. Emerg. Infect. Dis. 20, 1049–1053 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 148.

    Zhou, H. et al. Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell 184, 4380–4391.e14 (2021). This study reports the discovery of additional coronaviruses related to SARS-CoV-2 in Rhinolophus spp. and use of ecological modelling to highlight areas of southern China and South-East Asia as hotspots of Rhinolophus species diversity.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 149.

    Larsen, H. D. et al. Preliminary report of an outbreak of SARS-CoV-2 in mink and mink farmers associated with community spread, Denmark, June to November 2020. Eur. Surveill. 26, 2100009 (2021).

    CAS 

    Google Scholar 

  • 150.

    Bertzbach, L. D. et al. SARS-CoV-2 infection of Chinese hamsters (Cricetulus griseus) reproduces COVID-19 pneumonia in a well-established small animal model. Transbound. Emerg. Dis. 68, 1075–1079 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 151.

    Fagre, A. et al. SARS-CoV-2 infection, neuropathogenesis and transmission among deer mice: Implications for spillback to New World rodents. PLoS Pathog. 17, e1009585 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 152.

    Imai, M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc. Natl Acad. Sci. USA 117, 16587–16595 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 153.

    Sia, S. F. et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583, 834–838 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 154.

    Halfmann, P. J. et al. Transmission of SARS-CoV-2 in domestic cats. N. Engl. J. Med. 383, 592–594 (2020).

    PubMed 

    Google Scholar 

  • 155.

    Griffin, B. D. et al. SARS-CoV-2 infection and transmission in the North American deer mouse. Nat. Commun. 12, 1–10 (2021).

    Google Scholar 

  • 156.

    Palmer, M. V. et al. Susceptibility of white-tailed deer (Odocoileus virginianus) to SARS-CoV-2. J. Virol. 95, e00083–21 (2021).

    CAS 
    PubMed Central 

    Google Scholar 

  • 157.

    Plowright, R. K. & Hudson, P. J. From protein to pandemic: the transdisciplinary approach needed to prevent spillover and the next pandemic. Viruses 13, 1298 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 158.

    Obameso, J. O. et al. The persistent prevalence and evolution of cross-family recombinant coronavirus GCCDC1 among a bat population: a two-year follow-up. Sci. China Life Sci. 60, 1357–1363 (2017). This study provides evidence of coronavirus evolution in a longitudinally sampled population of bats.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 159.

    Lazov, C. et al. Detection and characterization of distinct alphacoronaviruses in five different bat species in Denmark. Viruses 10, 486 (2018).

    PubMed Central 

    Google Scholar 

  • 160.

    Hu, D. et al. Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats. Emerg. Microbes Infect. 7, 1–10 (2018).

    Google Scholar 

  • 161.

    Pepin, K. M., Lass, S., Pulliam, J. R. C., Read, A. F. & Lloyd-Smith, J. O. Identifying genetic markers of adaptation for surveillance of viral host jumps. Nat. Rev. Microbiol. 8, 802–813 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 162.

    Hemida, M. G. et al. Coronavirus infections in horses in Saudi Arabia and Oman. Transbound. Emerg. Dis. 64, 2093–2103 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 163.

    Zhuang, Q. et al. Surveillance and taxonomic analysis of the coronavirus dominant in pigeons in China. Transbound. Emerg. Dis. 67, 1981–1990 (2020).

    CAS 

    Google Scholar 

  • 164.

    O’Brien, S. J. et al. Genetic basis for species vulnerability in the cheetah. Science 227, 1428–1434 (1985).

    PubMed 

    Google Scholar 

  • 165.

    Herrewegh, A. A. P. M., Smeenk, I., Horzinek, M. C., Rottier, P. J. M. & de Groot, R. J. Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J. Virol. 72, 4508–4514 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Mapping classes of carbon

    Design’s new frontier