Study area
Kogi East located in Kogi State, North Central Nigeria. It is a geographical region comprising of nine (9) Local Government Areas (LGAs); Ankpa, Bassa, Dekina, Ibaji, Idah, Igalamela/Odolu, Ofu, Olamaboro and Omala. The region is located between latitude 6º32′33.8′′N to 8º02′44.8′′N and longitude 6º42′08.5′′E to 7º51′50.3′′E. It occupies an area of 26,197 square kilometres sharing boundaries with six (6) states of Nigeria28. The population of the region at 2006 is 1,479,144 with a projected population of 1,996,700 at 201629.
Ethical approval and informed consent
Ethical clearance was obtained from Research Ethics Committee, Kogi State Ministry of Health (KSMoH), Lokoja with reference number MOH/KGS/1376/1/82 and permission was obtained from the State Universal Basic Education Board (SUBEB), Lokoja with reference number KG/SUBEB/GEN/04/’T’ which was conveyed to the Education Secretaries of the 9 LGAs and the Headmasters (mistress) of the schools.
This study follows guidelines for the care and use of human samples established by the Human Care and Use Committee of the Ahmadu Bello University, Zaria, Kaduna State, Nigeria and the Research Ethics Committee, Kogi State Ministry of Health (KSMoH), Lokoja.
Statement of consent from participants
Written consents were obtained from the guardians/parents of study participants, informing them of their rights and granting permission for their children to participate in the study.
Source of epidemiological data
The epidemiological data used for this study were obtained from an earlier district-wide survey carried out in 2018 (Table 1)25 in rural communities of Kogi East, Kogi State, Nigeria. The study obtained samples from school-children of age 5 to 14 years. Samples collected were examined using formal ether sedimentation technique. The study was carried out in schools that did not receive anthelminthic drugs during the yearly periodic deworming exercise carried out by the State Ministry of Health. During the survey, the geographical coordinates of each school and community were captured within the school premises using a handheld Global Positioning system (GPS) device, Garmin 12XL (Garmin Corp, USA).
Spatial analysis of STHs
Co-ordinate of schools sampled and the mean prevalence of each parasites from the baseline study for A. lumbricoides, Hookworms and S. stercoralis were computed in Microsoft Excel version 2013 and converted to comma delimited file (.csv). These files were further converted from text files to shapefiles using DIVA-GIS version 7.5.0 and were geo-referenced on the map of Kogi East, Nigeria. The prevalence of these parasites were categorized; 0.0–1.0, > 1.0–5.0, > 5.0–10.0, > 10.0–20.0, > 20.0–50.0 and > 50.0 on the map (Figs. 1 and 2).
Source of Satellite Imagery: Image Google Earth: Landsat/Copernicus (Data SIO, NOAA, U.S. Navy, NGA, GEBCO. Maps were visualized on ArcMap 10.1. https://www.google.com/maps/place/Kogi/@7.3195959,7.2632804,189324m/data=!3m1!1e3!4m5!3m4!1s0x104f41e9d61f12dd:0xbdc9f94f2d58aafd!8m2!3d7.7337325!4d6.6905836.
Spatial Distribution of STHs in Communities of Kogi East, North Central Nigeria.
Source of Satellite Imagery: Image Google Earth: Landsat/Copernicus (Data SIO, NOAA, U.S. Navy, NGA, GEBCO. Maps were visualized on ArcMap 10.1. https://www.google.com/maps/place/Kogi/@7.3195959,7.2632804,189324m/data=!3m1!1e3!4m5!3m4!1s0x104f41e9d61f12dd:0xbdc9f94f2d58aafd!8m2!3d7.7337325!4d6.6905836.
Spatial Distribution of STHs in Local Government Areas of Kogi East, North Central Nigeria.
Environmental data collection
Climatic and elevation variables
Remotely sensed environmental data for altitude, temperature and precipitation were obtained from Worldclim database30. The climatic variables such as temperature and precipitation are at global and meso scales and topographic variables such as elevation and aspect likely affect species distributions at meso and topo-scales31. Hence, the use of the climatic and topographic variables in the prediction of distributions of soil transmitted helminths in Kogi East, Nigeria. Also, temperature was considered in the analysis because A. lumbricoides, hookworms and S. stercoralis have thermal thresholds of 38 °C, 40 °C and 40 °C respectively outside of which the survival of the infective stages in the soil decline32,33.
In this study, a total of 19 bioclimatic factors of present climate for Nigeria were downloaded at 1 km spatial resolution (Table 2) from Worldclim database30 and were used in the prediction of soil transmitted helminths distribution in Kogi East. Elevation data derived from the Shuttle Radar Topography Mission (SRTM) (aggregated to 30 arc-seconds, “1 km”) were also downloaded from WorldClim database30.
Edaphic variable
The influence of edaphic factors on the distribution of STHs have been reported by several researchers globally34,35,36 as important factors in the biology of STH parasites. In view of this, data for soil pH, soil moisture content, soil organic carbon and soil clay content for Africa continent were downloaded from International Soil Reference Centre (ISRIC) soil database as spatial layers (Table 2)37.
File conversions and resampling
The 19 bioclimatic factors downloaded from WorldClim data are in geographic coordinates of latitudes and longitudes which comes as .bil files were extracted into a folder. These data were transformed into predefined geographic coordinate system (GCS_WGS_1984), this projection was done on ArcMap 10.1 and were converted to asci files on DIVA-GIS 7.5. These files were transferred back to ArcMap and assigned a projected coordinate system of Universal Transverse Mercator (UTM) Zone 32 N (Nigeria is located on UTM Zone 31, 32 and 33). Also, the edaphic factors obtained were also assigned a projected coordinate system. The projected raster files (i.e. climatic, elevation and edaphic) were all clipped into a layer using the administrative boundary map of the study area, this was downloaded on DIVA-GIS database38.
Prior to modelling, all variables were resampled from their native resolution to a common resolution of 1 km spatial resolution using the nearest neighbour technique on ArcMap 10.1 to enable overlaying of variables. The resampled raster files were converted to float files on ArcMap 10.1 and transferred to DIVA-GIS 7.5. Float files were converted to grid files and then to asci files on DIVA-GIS 7.5 and were used on MaxEnt tool for modelling the distribution of STHs in Kogi East.
Ecological niche modelling
The potential distribution of STHs were modelled using maximum entropy (MaxEnt) software version 3.3.3k39. MaxEnt uses environmental data at occurrence and background locations to predict the distribution of a species across a landscape31,40. This modelling tool was selected based on the reasons of Sarma et al.41, they stated that this tool allows the use of presence only datasets and model robustness is hardly influenced by small sample sizes. It has been shown to be one of the top performing modelling tools42.
Probability of presence of each of the STH was estimated by MaxEnt using the prevalence of each of the STH parasites obtained for 45 sampled communities in the 9 LGAs of Kogi East during the district-wide survey carried out in 201825 served as the presence records to generate background points were used41. Regularization of the prevalence was performed to control over-fitting. This modelling tool uses five different features to perform its statistics; linear, quadratic, product, threshold and hinge features to produce a geographical distribution of species within a define area. The MaxEnt produces a logistic output format used in the production of a continuous map that provides a visualization with an estimated probability of species between 0 and 1. This map distinguish areas of high and low risk for STH infections41.
The 19 bioclimatic factors, elevation data and the edaphic factors obtained were used for the ecological niche modelling. The level of significance of contribution of the altitude and 19 bioclimatic factors was used to calculate the area under the receiver operating characteristics curve (AUC) was used to evaluate the model performance. The AUC values varies from 0.5 to 1.0; an AUC value of 0.5 indicates that model predictions are not better than random, values < 0.5 are worse than random, 0.5–0.7 signifies poor performance, 0.7–0.9 signifies reasonable/moderate performance and > 0.9 indicates high model performance43.
Model validation was performed as follows41, using the ‘sub-sampling’ procedure in MaxEnt. 75% of the parasites prevalence data were used for model calibration and the remaining 25% for model validation. Ten replicates were run and average AUC values for training and test datasets were calculated. Maximum iterations were set at 5000. Sensitivity, which is also named the true positive rate, can measure the ability to correctly identify areas infected. Its value equals the rate of true positive and the sum value of true positive and false negative. Specificity, which is also named the true negative rate, can measure the ability to correctly identify areas uninfected. Its value equals the rate of true negative and the sum value of false positive and true negative.
Ethics approval
This study follows guidelines for the care and use of experimental animals established by the Animal Care and Use Committee of the Ahmadu Bello University, Zaria for the purpose of control and supervision of experiments on animals and ethical permission for the study was obtained from the ethical Board of Kogi State Ministry of Health, Lokoja with reference number: MOH/KGS/1376/1/82.
Source: Ecology - nature.com