Johnson, C. L., Runge, J. A., Curtis, K. A. & Durbin, E. G. Biodiversity and ecosystem function in the Gulf of Maine: Pattern and role of Zooplankton and Pelagic Nekton. PLoS ONE 6(1), e16491 (2011).
Google Scholar
Bulman, C. M., He, X. & Koslow, J. A. Trophic ecology of the mid-slope demersal fish community off southern Tasmania, Australia. Mar. Freshw. Res. 53(1), 59–72 (2002).
Google Scholar
Walker, W. A., Mead, J. G. & Brownell, R. L. Diets of Baird’s beaked whales, Berardius bairdii, in the southern Sea of Okhotsk and off the Pacific coast of Honshu, Japan. Mar. Mamm. Sci. 18, 902–919 (2002).
Google Scholar
Boeing, W. J. & Duffy-Anderson, J. T. Ichthyoplankton dynamics and biodiversity in the Gulf of Alaska: Responses to environmental change. Ecol. Ind. 8, 292–302 (2008).
Google Scholar
Beaugrand, G., Brander, K. M., Souissi, J. A. L. S. & Reid, P. C. Plankton effect on cod recruitment in the North Sea. Nature 426, 661–664 (2003).
Google Scholar
Möllmann, C. & Diekmann, R. Marine ecosystem regime shifts induced by climate and overfishing: A review for the Northern Hemisphere. Adv. Ecol. Res. 47, 303 (2012).
Google Scholar
Morote, E., Olivar, M. P., Bozzano, A., Villate, F. & Uriarte, I. Feeding selectivity in larvae of the European hake (Merluccius merluccius) in relation to ontogeny and visual capabilities. Mar. Biol. 158, 1349–1361 (2011).
Google Scholar
Rombouts, I. et al. Global latitudinal variations in marine copepod diversity and environmental factors. Proc. R. Soc. B Biol. Sci. 276(1670), 3053–3062 (2009).
Google Scholar
Piontkovski, S. A. & Castellani, C. Long-term declining trend of zooplankton biomass in the Tropical Atlantic. Hydrobiologia 632, 365–370 (2009).
Google Scholar
Ruppert, K. M., Kline, R. J. & Rahman, Md. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).
Google Scholar
Ardura, A., Morote, E., Kochzius, M. & Garcia-Vazquez, E. Diversity of planktonic fish larvae along a latitudinal gradient in the Eastern Atlantic Ocean estimated through DNA barcodes. PeerJ 4, e2438 (2016).
Google Scholar
Fuentes, S., Rick, J., Scherp, P., Chistoserdov, A., & Noel, J. Development of Real-Time PCR assays for the detection of Cylindrospermopsis raciborskii. In Proceedings of the 12th International Conference on Harmful Algae, 397 (2008).
Zaiko, A. et al. Metabarcoding approach for the ballast water surveillance—An advantageous solution or an awkward challenge?. Mar. Pollut. Bull. 92, 25–34 (2015).
Google Scholar
Zaiko, A. et al. Detecting nuisance species using NGST: Methodology shortcomings and possible application in ballast water monitoring. Mar. Environ. Res. 112(B), 64–72 (2015).
Google Scholar
Ardura, A., Zaiko, A., Martinez, J. L., Borrell, Y. J. & Garcia-Vazquez, E. Environmental DNA evidence of transfer of North Sea molluscs across tropical waters. J. Molluscan Stud. 81(4), 495–501 (2015).
Google Scholar
Zaiko, A., Samulioviene, A., Ardura, A. & Garcia-Vazquez, E. Metabarcoding approach for nonindigenous species surveillance in marine coastal waters. Mar. Pollut. Bull. 10, 53–59 (2015).
Google Scholar
Borrell, Y. J. et al. Metabarcoding and post-sampling strategies to discover non-indigenous species: A case study in the estuaries of the central south Bay of Biscay. J. Nat. Conserv. 42, 67–74. https://doi.org/10.1016/j.jnc.2017.07.002 (2017).
Google Scholar
Steyaert, M. et al. Advances in metabarcoding techniques bring us closer to reliable monitoring of the marine benthos. J. Appl. Ecol. 57, 2234–2245. https://doi.org/10.1111/1365-2664.13729 (2020).
Google Scholar
von Ammon, U. et al. Combining morpho-taxonomy and metabarcoding enhances the detection of non-indigenous marine pests in biofouling communities. Sci. Rep. 8, 16290. https://doi.org/10.1038/s41598-018-34541-1 (2018).
Google Scholar
Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348(6237), 1261359. https://doi.org/10.1126/science.1261359 (2015).
Google Scholar
Gimmler, A., de Vargas, C., Audic, S. & Stoeck, T. The Tara Oceans voyage reveals global diversity and distribution patterns of marine planktonic ciliates. Sci. Rep. 6, 33555 (2016).
Google Scholar
Bucklin, A., Lindeque, P. K., Rodriguez-Ezpeleta, N., Albaina, A. & Lehtiniemi, M. Metabarcoding of marine zooplankton: Prospects, progress and pitfalls. J. Plankton Res. 38(3), 393–400. https://doi.org/10.1093/plankt/fbw023 (2016).
Google Scholar
Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929e942 (2016).
Google Scholar
Holdaway, R. et al. Using DNA metabarcoding to assess New Zealand’s terrestrial biodiversity. N. Z. J. Ecol. 41(2), 251–262. https://doi.org/10.20417/nzjecol.41.28 (2017).
Google Scholar
van der Loos, L. M. & Nijland, R. Biases in bulk: DNA metabarcoding of marine communities and the methodology involved. Mol. Ecol. 00, 1–19. https://doi.org/10.1111/mec.15592 (2020).
Google Scholar
Weigand, H. et al. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. Sci. Tot. Environ. 678, 499–524 (2019).
Google Scholar
Ardura, A. Species-specific markers for early detection of marine invertebrate invaders through eDNA methods: Gaps and priorities in GenBank as database example. J. Nat. Conserv. 47, 51–57. https://doi.org/10.1016/j.jnc.2018.11.005 (2019).
Google Scholar
Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. Biological identifications through DNA barcodes. Proc. Natl. Acad. Sci. U. S. A. 270, 313–321 (2003).
Google Scholar
Ward, R., Hanner, R. & Hebert, P. The campaign to DNA barcode all fishes, FISH-BOL. J. Fish Biol. 74, 329–356. https://doi.org/10.1111/j.1095-8649.2008.02080.x (2009).
Google Scholar
Elbrecht, V. & Leese, F. Validation and development of COI metabarcoding primers for freshwater macroinvertebrate bioassessment. Front. Environ. Sci. 5, 11. https://doi.org/10.3389/fenvs.2017.00011 (2017).
Google Scholar
Albaina, A., Aguirre, M., Abad, D., Santos, M. & Estonba, A. 18S rRNA V9 metabarcoding for diet characterization: A critical evaluation with two sympatric zooplanktivorous fish species. Ecol. Evol. 6(6), 1809–1824 (2016).
Google Scholar
Abad, D., Albaina, A., Aguirre, M. & Estonaba, A. 18S V9 metabarcoding correctly depicts plankton estuarine community drivers. Mar. Ecol. Prog. Ser. 584, 31–43 (2017).
Google Scholar
Günther, B., Knebelsberger, T., Neumann, H., Laakman, S. & Martinez Arbizu, P. Metabarcoding of marine environmental DNA based on mitochondrial and nuclear genes. Sci. Rep. 8, 14822 (2018).
Google Scholar
Borrell, Y. J., Miralles, L., Do-Huu, H., Mohammed-Geba, K. & Garcia-Vazquez, E. DNA in a bottle—Rapid metabarcoding survey for early alerts of invasive species in ports. PLoS ONE 12(9), e0183347. https://doi.org/10.1371/journal.pone.0183347 (2017).
Google Scholar
Ardura, A. et al. Nuisance Algae in ballast water facing international conventions. Insights from DNA metabarcoding in ships arriving in bay of Biscay. Water 12(8), 1–14. https://doi.org/10.3390/W12082168 (2020).
Google Scholar
Jose, E. C., Furio, E. F., Borja, V. M., Gatdula, N. C. & Santos, M. D. Zooplankton composition and abundance and its relationship with physico-chemical parameters in Manila Bay. J. Oceanogr. Mar. Res. 3(1), 1000136 (2015).
Google Scholar
Montoya-Maya, P. & Strydom, N. A. Zooplankton composition, abundance and distribution in selected south and west coast estuaries in South Africa. Afr. J. Aquat. Sci. 34(2), 147–157 (2009).
Google Scholar
Youssara, F. & Gaudy, R. Variations of zooplankton in the frontal area of the Alboran sea (Mediterranean Sea) in winter 1997. Oceanol. Acta 24, 361–376 (2001).
Google Scholar
Ndour, I., Berraho, A., Fall, M., Ettahiri, O. & Sambe, B. Composition, distribution and abundance of zooplankton and ichthyoplankton along the Senegal-Guinea maritime zone (West Africa). Egypt. J. Aquat. Res. 44(2), 109–124 (2018).
Google Scholar
Siokou-Frangou, I. et al. Plankton in the open Mediterranean Sea: A review. Biogeosciences 7, 1543–1586 (2010).
Google Scholar
Uye, S., Iwamoto, N., Ueda, T., Tamaki, H. & Nakahira, K. Geographical variations in the trophic structure of the plankton community along a eutrophic-mesotrophic-oligotrophic transect. Fish. Oceanogr. 8(3), 227–237 (1999).
Google Scholar
Hanfland, C. & König, B. The Expedition PS116 of the Research Vessel Polarstern to the Atlantic Ocean in 2018, Berichte zur Polar- und Meeresforschung = Reports on polar and marine research. Bremerhaven Alfred Wegener Inst. Polar Mar. Res. 731, 54. https://doi.org/10.2312/BzPM_0731_2019 (2019).
Google Scholar
Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Front. Zool. 10(1), 34. https://doi.org/10.1186/1742-9994-10-34 (2013).
Google Scholar
Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861. https://doi.org/10.1111/1755-0998.12138 (2013).
Google Scholar
Fernandez, S., Rodríguez-Martínez, S., Martínez, J. L., Garcia-Vazquez, E. & Ardura, A. How can eDNA contribute in riverine macroinvertebrate assessment? A metabarcoding approach in the Nalón River (Asturias, Northern Spain). Environ. DNA 1, 385–401. https://doi.org/10.1002/edn3.40 (2019).
Google Scholar
Zhan, A. et al. High sensitivity of 454 pyrosequencing for detection of rare species in aquatic communities. Methods Ecol. Evol. 4(6), 558–565 (2013).
Google Scholar
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).
Google Scholar
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, 14.1. Technical notes. (2011).
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
Google Scholar
Baker, C. Workflow for generating a qiime-compatible blast database from an entrez search. (2017).
Pielou, E. C. Ecological Diversity Vol. 7, 165 (Wiley, 1975).
Hammer, O., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4(1), 1–9 (2001).
Perez, J., Álvarez, P., Martinez, J. L. & Garcia-Vazquez, E. Genetic identification of hake and megrim eggs in formaldehyde-fixed plankton samples. ICES J. Mar. Sci. 62(5), 908–914. https://doi.org/10.1016/j.icesjms.2005.04.001 (2005).
Google Scholar
Von der Heyden, S., Lipinski, M. R. & Matthee, C. A. Species specific genetic markers for identification of early life history stages of Cape hakes, Merluccius capensis and M. paradoxus in the southern Benguela Current. J. Fish Biol. 70, 262–268 (2007).
Google Scholar
Fox, C. J. et al. TaqMan DNA technology confirms likely overestimation of cod (Gadus morhua L.) egg abundance in the Irish Sea: Implications for the assessment of the cod stock and mapping of spawning areas using egg-based methods. Mol. Ecol. 14, 879–884 (2005).
Google Scholar
Karaiskou, N. et al. Horse mackerel egg identification using DNA methodology. Mar. Ecol. 28, 429–434 (2007).
Google Scholar
Madden, M. J. L. et al. Using DNA barcoding to improve invasive pest identification at U.S. ports-of-entry. PLoS ONE 14, e0222291. https://doi.org/10.1371/journal.pone.0222291 (2019).
Google Scholar
Bridge, P. D., Roberts, P. J., Spooner, B. M. & Panchal, G. On the unreliability of published DNA sequences. New Phytol. 160, 43–48. https://doi.org/10.1046/j.1469-8137.2003.00861.x (2003).
Google Scholar
Leray, M. et al. GenBank is a reliable resource for 21st century biodiversity research. PNAS 116, 22651–22656. https://doi.org/10.1073/pnas.1911714116 (2019).
Google Scholar
Edwards, M. et al. Multi-decadal oceanic ecological datasets and their application in marine policy and management. Trends Ecol. Evol. 25(10), 602–610. https://doi.org/10.1016/j.tree.2010.07.007 (2010).
Google Scholar
Pillar, S. C. & Wilkinson, I. S. The diet of Cape hake Merluccius capensis on the south coast of South Africa. S. Afr. J. Mar. Sci. 15(1), 225–239. https://doi.org/10.2989/02577619509504845 (1995).
Google Scholar
Miossec, L., Le Deuff, R. M. & Goulletquer, R. Alien Species Alert: Crassostrea gigas (Pacific oyster). ICES Cooper. Res. Rep. 299, 42 (2009).
Eckman, J. E. Closing the larval loop: Linking larval ecology to the population dynamics of marine benthic invertebrates. J. Exp. Mar. Biol. Ecol. 200, 207–237 (1996).
Google Scholar
Wellington, G. M. & Victor, B. C. Planktonic larval duration of one hundred species of Pacific and Atlantic damselfishes (Pomacentridae). Mar. Biol. 101, 557–567 (1989).
Google Scholar
Roy, K., Jablonski, D., Valentine, J. W. & Rosenberg, G. Marine latitudinal diversity gradients: Tests of causal hypotheses. Proc. Natl. Acad. Sci. U. S. A. 95, 3699–3702 (1998).
Google Scholar
Hillebrand, H. Strength, slope and variability of marine latitudinal gradients. Mar. Ecol. Prog. Ser. 273, 251–267 (2004).
Google Scholar
Fuhrman, J. A. et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc. Natl. Acad. Sci. U. S. A. 105(22), 7774–7778 (2008).
Google Scholar
Chao, Z. et al. Cytochrome C oxidase subunit I barcodes provide an efficient tool for Jinqian Baihua She (Bungarus parvus) authentication. Pharmacogn. Mag. 10(40), 449–457. https://doi.org/10.4103/0973-1296.141816 (2014).
Google Scholar
Ibabe, A., Rayon, F., Martinez, J. L. & Garcia-Vazquez, E. Environmental DNA from plastic and textile marine litter detects exotic and nuisance species nearby ports. PLoS ONE 15(6), e0228811 (2020).
Google Scholar
Ardura, A. et al. Stress resistance for unraveling potential biopollutants. Insight from ballast wáter community análisis through DNA. Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2020.111935 (2020).
Google Scholar
Brown, C. M. et al. Short-term changes in reef fish community metrics correlate with variability in large shark occurrence. Food Webs 24, e00147. https://doi.org/10.1016/j.fooweb.2020.e00147 (2020).
Google Scholar
Paxton, A. B. et al. Artificial habitats host elevated densities of large reef-associated predators. PLoS ONE 15(9), e0237374. https://doi.org/10.1371/journal.pone.0237374 (2020).
Google Scholar
Elbrecht, V. & Leese, F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass-sequence relationships with an innovative metabarcoding protocol. PLoS ONE 10(7), e0130324. https://doi.org/10.1371/journal.pone.0130324 (2015).
Google Scholar
Source: Ecology - nature.com