in

eDNA metabarcoding of small plankton samples to detect fish larvae and their preys from Atlantic and Pacific waters

  • 1.

    Johnson, C. L., Runge, J. A., Curtis, K. A. & Durbin, E. G. Biodiversity and ecosystem function in the Gulf of Maine: Pattern and role of Zooplankton and Pelagic Nekton. PLoS ONE 6(1), e16491 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Bulman, C. M., He, X. & Koslow, J. A. Trophic ecology of the mid-slope demersal fish community off southern Tasmania, Australia. Mar. Freshw. Res. 53(1), 59–72 (2002).

    Article 

    Google Scholar 

  • 3.

    Walker, W. A., Mead, J. G. & Brownell, R. L. Diets of Baird’s beaked whales, Berardius bairdii, in the southern Sea of Okhotsk and off the Pacific coast of Honshu, Japan. Mar. Mamm. Sci. 18, 902–919 (2002).

    Article 

    Google Scholar 

  • 4.

    Boeing, W. J. & Duffy-Anderson, J. T. Ichthyoplankton dynamics and biodiversity in the Gulf of Alaska: Responses to environmental change. Ecol. Ind. 8, 292–302 (2008).

    Article 

    Google Scholar 

  • 5.

    Beaugrand, G., Brander, K. M., Souissi, J. A. L. S. & Reid, P. C. Plankton effect on cod recruitment in the North Sea. Nature 426, 661–664 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Möllmann, C. & Diekmann, R. Marine ecosystem regime shifts induced by climate and overfishing: A review for the Northern Hemisphere. Adv. Ecol. Res. 47, 303 (2012).

    Article 

    Google Scholar 

  • 7.

    Morote, E., Olivar, M. P., Bozzano, A., Villate, F. & Uriarte, I. Feeding selectivity in larvae of the European hake (Merluccius merluccius) in relation to ontogeny and visual capabilities. Mar. Biol. 158, 1349–1361 (2011).

    Article 

    Google Scholar 

  • 8.

    Rombouts, I. et al. Global latitudinal variations in marine copepod diversity and environmental factors. Proc. R. Soc. B Biol. Sci. 276(1670), 3053–3062 (2009).

    Article 

    Google Scholar 

  • 9.

    Piontkovski, S. A. & Castellani, C. Long-term declining trend of zooplankton biomass in the Tropical Atlantic. Hydrobiologia 632, 365–370 (2009).

    Article 

    Google Scholar 

  • 10.

    Ruppert, K. M., Kline, R. J. & Rahman, Md. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).

    Article 

    Google Scholar 

  • 11.

    Ardura, A., Morote, E., Kochzius, M. & Garcia-Vazquez, E. Diversity of planktonic fish larvae along a latitudinal gradient in the Eastern Atlantic Ocean estimated through DNA barcodes. PeerJ 4, e2438 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Fuentes, S., Rick, J., Scherp, P., Chistoserdov, A., & Noel, J. Development of Real-Time PCR assays for the detection of Cylindrospermopsis raciborskii. In Proceedings of the 12th International Conference on Harmful Algae, 397 (2008).

  • 13.

    Zaiko, A. et al. Metabarcoding approach for the ballast water surveillance—An advantageous solution or an awkward challenge?. Mar. Pollut. Bull. 92, 25–34 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Zaiko, A. et al. Detecting nuisance species using NGST: Methodology shortcomings and possible application in ballast water monitoring. Mar. Environ. Res. 112(B), 64–72 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Ardura, A., Zaiko, A., Martinez, J. L., Borrell, Y. J. & Garcia-Vazquez, E. Environmental DNA evidence of transfer of North Sea molluscs across tropical waters. J. Molluscan Stud. 81(4), 495–501 (2015).

    Article 

    Google Scholar 

  • 16.

    Zaiko, A., Samulioviene, A., Ardura, A. & Garcia-Vazquez, E. Metabarcoding approach for nonindigenous species surveillance in marine coastal waters. Mar. Pollut. Bull. 10, 53–59 (2015).

    Article 
    CAS 

    Google Scholar 

  • 17.

    Borrell, Y. J. et al. Metabarcoding and post-sampling strategies to discover non-indigenous species: A case study in the estuaries of the central south Bay of Biscay. J. Nat. Conserv. 42, 67–74. https://doi.org/10.1016/j.jnc.2017.07.002 (2017).

    Article 

    Google Scholar 

  • 18.

    Steyaert, M. et al. Advances in metabarcoding techniques bring us closer to reliable monitoring of the marine benthos. J. Appl. Ecol. 57, 2234–2245. https://doi.org/10.1111/1365-2664.13729 (2020).

    CAS 
    Article 

    Google Scholar 

  • 19.

    von Ammon, U. et al. Combining morpho-taxonomy and metabarcoding enhances the detection of non-indigenous marine pests in biofouling communities. Sci. Rep. 8, 16290. https://doi.org/10.1038/s41598-018-34541-1 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348(6237), 1261359. https://doi.org/10.1126/science.1261359 (2015).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Gimmler, A., de Vargas, C., Audic, S. & Stoeck, T. The Tara Oceans voyage reveals global diversity and distribution patterns of marine planktonic ciliates. Sci. Rep. 6, 33555 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Bucklin, A., Lindeque, P. K., Rodriguez-Ezpeleta, N., Albaina, A. & Lehtiniemi, M. Metabarcoding of marine zooplankton: Prospects, progress and pitfalls. J. Plankton Res. 38(3), 393–400. https://doi.org/10.1093/plankt/fbw023 (2016).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929e942 (2016).

    Article 
    CAS 

    Google Scholar 

  • 24.

    Holdaway, R. et al. Using DNA metabarcoding to assess New Zealand’s terrestrial biodiversity. N. Z. J. Ecol. 41(2), 251–262. https://doi.org/10.20417/nzjecol.41.28 (2017).

    Article 

    Google Scholar 

  • 25.

    van der Loos, L. M. & Nijland, R. Biases in bulk: DNA metabarcoding of marine communities and the methodology involved. Mol. Ecol. 00, 1–19. https://doi.org/10.1111/mec.15592 (2020).

    Article 

    Google Scholar 

  • 26.

    Weigand, H. et al. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. Sci. Tot. Environ. 678, 499–524 (2019).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Ardura, A. Species-specific markers for early detection of marine invertebrate invaders through eDNA methods: Gaps and priorities in GenBank as database example. J. Nat. Conserv. 47, 51–57. https://doi.org/10.1016/j.jnc.2018.11.005 (2019).

    Article 

    Google Scholar 

  • 28.

    Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. Biological identifications through DNA barcodes. Proc. Natl. Acad. Sci. U. S. A. 270, 313–321 (2003).

    CAS 

    Google Scholar 

  • 29.

    Ward, R., Hanner, R. & Hebert, P. The campaign to DNA barcode all fishes, FISH-BOL. J. Fish Biol. 74, 329–356. https://doi.org/10.1111/j.1095-8649.2008.02080.x (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 30.

    Elbrecht, V. & Leese, F. Validation and development of COI metabarcoding primers for freshwater macroinvertebrate bioassessment. Front. Environ. Sci. 5, 11. https://doi.org/10.3389/fenvs.2017.00011 (2017).

    Article 

    Google Scholar 

  • 31.

    Albaina, A., Aguirre, M., Abad, D., Santos, M. & Estonba, A. 18S rRNA V9 metabarcoding for diet characterization: A critical evaluation with two sympatric zooplanktivorous fish species. Ecol. Evol. 6(6), 1809–1824 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Abad, D., Albaina, A., Aguirre, M. & Estonaba, A. 18S V9 metabarcoding correctly depicts plankton estuarine community drivers. Mar. Ecol. Prog. Ser. 584, 31–43 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 33.

    Günther, B., Knebelsberger, T., Neumann, H., Laakman, S. & Martinez Arbizu, P. Metabarcoding of marine environmental DNA based on mitochondrial and nuclear genes. Sci. Rep. 8, 14822 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 34.

    Borrell, Y. J., Miralles, L., Do-Huu, H., Mohammed-Geba, K. & Garcia-Vazquez, E. DNA in a bottle—Rapid metabarcoding survey for early alerts of invasive species in ports. PLoS ONE 12(9), e0183347. https://doi.org/10.1371/journal.pone.0183347 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Ardura, A. et al. Nuisance Algae in ballast water facing international conventions. Insights from DNA metabarcoding in ships arriving in bay of Biscay. Water 12(8), 1–14. https://doi.org/10.3390/W12082168 (2020).

    Article 

    Google Scholar 

  • 36.

    Jose, E. C., Furio, E. F., Borja, V. M., Gatdula, N. C. & Santos, M. D. Zooplankton composition and abundance and its relationship with physico-chemical parameters in Manila Bay. J. Oceanogr. Mar. Res. 3(1), 1000136 (2015).

    Article 

    Google Scholar 

  • 37.

    Montoya-Maya, P. & Strydom, N. A. Zooplankton composition, abundance and distribution in selected south and west coast estuaries in South Africa. Afr. J. Aquat. Sci. 34(2), 147–157 (2009).

    Article 

    Google Scholar 

  • 38.

    Youssara, F. & Gaudy, R. Variations of zooplankton in the frontal area of the Alboran sea (Mediterranean Sea) in winter 1997. Oceanol. Acta 24, 361–376 (2001).

    Article 

    Google Scholar 

  • 39.

    Ndour, I., Berraho, A., Fall, M., Ettahiri, O. & Sambe, B. Composition, distribution and abundance of zooplankton and ichthyoplankton along the Senegal-Guinea maritime zone (West Africa). Egypt. J. Aquat. Res. 44(2), 109–124 (2018).

    Article 

    Google Scholar 

  • 40.

    Siokou-Frangou, I. et al. Plankton in the open Mediterranean Sea: A review. Biogeosciences 7, 1543–1586 (2010).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Uye, S., Iwamoto, N., Ueda, T., Tamaki, H. & Nakahira, K. Geographical variations in the trophic structure of the plankton community along a eutrophic-mesotrophic-oligotrophic transect. Fish. Oceanogr. 8(3), 227–237 (1999).

    Article 

    Google Scholar 

  • 42.

    Hanfland, C. & König, B. The Expedition PS116 of the Research Vessel Polarstern to the Atlantic Ocean in 2018, Berichte zur Polar- und Meeresforschung = Reports on polar and marine research. Bremerhaven Alfred Wegener Inst. Polar Mar. Res. 731, 54. https://doi.org/10.2312/BzPM_0731_2019 (2019).

    Article 

    Google Scholar 

  • 43.

    Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Front. Zool. 10(1), 34. https://doi.org/10.1186/1742-9994-10-34 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861. https://doi.org/10.1111/1755-0998.12138 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 45.

    Fernandez, S., Rodríguez-Martínez, S., Martínez, J. L., Garcia-Vazquez, E. & Ardura, A. How can eDNA contribute in riverine macroinvertebrate assessment? A metabarcoding approach in the Nalón River (Asturias, Northern Spain). Environ. DNA 1, 385–401. https://doi.org/10.1002/edn3.40 (2019).

    Article 

    Google Scholar 

  • 46.

    Zhan, A. et al. High sensitivity of 454 pyrosequencing for detection of rare species in aquatic communities. Methods Ecol. Evol. 4(6), 558–565 (2013).

    Article 

    Google Scholar 

  • 47.

    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, 14.1. Technical notes. (2011).

  • 49.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Baker, C. Workflow for generating a qiime-compatible blast database from an entrez search. (2017).

  • 51.

    Pielou, E. C. Ecological Diversity Vol. 7, 165 (Wiley, 1975).

    Google Scholar 

  • 52.

    Hammer, O., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4(1), 1–9 (2001).

    Google Scholar 

  • 53.

    Perez, J., Álvarez, P., Martinez, J. L. & Garcia-Vazquez, E. Genetic identification of hake and megrim eggs in formaldehyde-fixed plankton samples. ICES J. Mar. Sci. 62(5), 908–914. https://doi.org/10.1016/j.icesjms.2005.04.001 (2005).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Von der Heyden, S., Lipinski, M. R. & Matthee, C. A. Species specific genetic markers for identification of early life history stages of Cape hakes, Merluccius capensis and M. paradoxus in the southern Benguela Current. J. Fish Biol. 70, 262–268 (2007).

    Article 

    Google Scholar 

  • 55.

    Fox, C. J. et al. TaqMan DNA technology confirms likely overestimation of cod (Gadus morhua L.) egg abundance in the Irish Sea: Implications for the assessment of the cod stock and mapping of spawning areas using egg-based methods. Mol. Ecol. 14, 879–884 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 56.

    Karaiskou, N. et al. Horse mackerel egg identification using DNA methodology. Mar. Ecol. 28, 429–434 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 57.

    Madden, M. J. L. et al. Using DNA barcoding to improve invasive pest identification at U.S. ports-of-entry. PLoS ONE 14, e0222291. https://doi.org/10.1371/journal.pone.0222291 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Bridge, P. D., Roberts, P. J., Spooner, B. M. & Panchal, G. On the unreliability of published DNA sequences. New Phytol. 160, 43–48. https://doi.org/10.1046/j.1469-8137.2003.00861.x (2003).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Leray, M. et al. GenBank is a reliable resource for 21st century biodiversity research. PNAS 116, 22651–22656. https://doi.org/10.1073/pnas.1911714116 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 60.

    Edwards, M. et al. Multi-decadal oceanic ecological datasets and their application in marine policy and management. Trends Ecol. Evol. 25(10), 602–610. https://doi.org/10.1016/j.tree.2010.07.007 (2010).

    Article 
    PubMed 

    Google Scholar 

  • 61.

    Pillar, S. C. & Wilkinson, I. S. The diet of Cape hake Merluccius capensis on the south coast of South Africa. S. Afr. J. Mar. Sci. 15(1), 225–239. https://doi.org/10.2989/02577619509504845 (1995).

    Article 

    Google Scholar 

  • 62.

    Miossec, L., Le Deuff, R. M. & Goulletquer, R. Alien Species Alert: Crassostrea gigas (Pacific oyster). ICES Cooper. Res. Rep. 299, 42 (2009).

    Google Scholar 

  • 63.

    Eckman, J. E. Closing the larval loop: Linking larval ecology to the population dynamics of marine benthic invertebrates. J. Exp. Mar. Biol. Ecol. 200, 207–237 (1996).

    Article 

    Google Scholar 

  • 64.

    Wellington, G. M. & Victor, B. C. Planktonic larval duration of one hundred species of Pacific and Atlantic damselfishes (Pomacentridae). Mar. Biol. 101, 557–567 (1989).

    Article 

    Google Scholar 

  • 65.

    Roy, K., Jablonski, D., Valentine, J. W. & Rosenberg, G. Marine latitudinal diversity gradients: Tests of causal hypotheses. Proc. Natl. Acad. Sci. U. S. A. 95, 3699–3702 (1998).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Hillebrand, H. Strength, slope and variability of marine latitudinal gradients. Mar. Ecol. Prog. Ser. 273, 251–267 (2004).

    ADS 
    Article 

    Google Scholar 

  • 67.

    Fuhrman, J. A. et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc. Natl. Acad. Sci. U. S. A. 105(22), 7774–7778 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Chao, Z. et al. Cytochrome C oxidase subunit I barcodes provide an efficient tool for Jinqian Baihua She (Bungarus parvus) authentication. Pharmacogn. Mag. 10(40), 449–457. https://doi.org/10.4103/0973-1296.141816 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Ibabe, A., Rayon, F., Martinez, J. L. & Garcia-Vazquez, E. Environmental DNA from plastic and textile marine litter detects exotic and nuisance species nearby ports. PLoS ONE 15(6), e0228811 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 70

    Ardura, A. et al. Stress resistance for unraveling potential biopollutants. Insight from ballast wáter community análisis through DNA. Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2020.111935 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 71.

    Brown, C. M. et al. Short-term changes in reef fish community metrics correlate with variability in large shark occurrence. Food Webs 24, e00147. https://doi.org/10.1016/j.fooweb.2020.e00147 (2020).

    Article 

    Google Scholar 

  • 72.

    Paxton, A. B. et al. Artificial habitats host elevated densities of large reef-associated predators. PLoS ONE 15(9), e0237374. https://doi.org/10.1371/journal.pone.0237374 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Elbrecht, V. & Leese, F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass-sequence relationships with an innovative metabarcoding protocol. PLoS ONE 10(7), e0130324. https://doi.org/10.1371/journal.pone.0130324 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Homing in on longer-lasting perovskite solar cells

    10 years of Nature Climate Change