in

eDNA sampled from stream networks correlates with camera trap detection rates of terrestrial mammals

  • 1.

    Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Stem, C., Margoluis, R., Salafsky, N. & Brown, M. Monitoring and evaluation in conservation: a review of trends and approaches. Conserv. Biol. 19, 295–309 (2005).

    Article 

    Google Scholar 

  • 4.

    Atwood, T. B. et al. Herbivores at the highest risk of extinction among mammals, birds, and reptiles. Sci. Adv. 6, eabb8458 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Cardillo, M. et al. Human population density and extinction risk in the world’s carnivores. PLoS Biol 2, e197 (2004).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 7.

    Wolf, C. & Ripple, W. J. Prey depletion as a threat to the world’s large carnivores. R. Soc. Open Sci. 3, 160252 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Kissling, W. D. et al. Building essential biodiversity variables (EBV s) of species distribution and abundance at a global scale. Biol. Rev. 93, 600–625 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Nesshöver, C., Livoreil, B., Schindler, S. & Vandewalle, M. Challenges and solutions for networking knowledge holders and better informing decision-making on biodiversity and ecosystem services. Biodivers. Conserv. 25, 1207–1214 (2016).

    Article 

    Google Scholar 

  • 10.

    Gardner, T. A. et al. The cost-effectiveness of biodiversity surveys in tropical forests. Ecol. Lett. 11, 139–150 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Field, S. A., Tyre, A. J. & Possingham, H. P. Optimizing allocation of monitoring effort under economic and observational constraints. J. Wildl. Manag. 69, 473–482 (2005).

    Article 

    Google Scholar 

  • 12.

    Braunisch, V. & Suchant, R. Predicting species distributions based on incomplete survey data: The trade-off between precision and scale. Ecography 33, 826–840 (2010).

    Article 

    Google Scholar 

  • 13.

    Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol. 21, 1789–1793 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Deiner, K. et al. Long-range PCR allows sequencing of mitochondrial genomes from environmental DNA. Methods Ecol. Evol. 8, 1888–1898 (2017).

    Article 

    Google Scholar 

  • 15.

    Deiner, K., Walser, J.-C., Mächler, E. & Altermatt, F. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biol. Conserv. 183, 53–63 (2015).

    Article 

    Google Scholar 

  • 16.

    Tsuji, S., Takahara, T., Doi, H., Shibata, N. & Yamanaka, H. The detection of aquatic macroorganisms using environmental DNA analysis—A review of methods for collection, extraction, and detection. Environ. DNA 1, 99–108 (2019).

    Article 

    Google Scholar 

  • 17.

    Sales, N. G. et al. Fishing for mammals: Landscape-level monitoring of terrestrial and semi-aquatic communities using eDNA from riverine systems. J. Appl. Ecol. 57, 707–716 (2020).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Sales, N. G. et al. Assessing the potential of environmental DNA metabarcoding for monitoring Neotropical mammals: a case study in the Amazon and Atlantic Forest, Brazil. Mammal Rev. 50, 221–225 (2020).

    Article 

    Google Scholar 

  • 19.

    Barnes, M. A. & Turner, C. R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 17, 1–17 (2016).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Leempoel, K., Hebert, T. & Hadly, E. A. A comparison of eDNA to camera trapping for assessment of terrestrial mammal diversity. Proc. R. Soc. B Biol. Sci. 287, 20192353 (2020).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Harper, L. R. et al. Environmental DNA (eDNA) metabarcoding of pond water as a tool to survey conservation and management priority mammals. Biol. Conserv. 238, 108225 (2019).

    Article 

    Google Scholar 

  • 23.

    Rodgers, T. W. & Mock, K. E. Drinking water as a source of environmental DNA for the detection of terrestrial wildlife species. Conserv. Genet. Resour. 7, 693–696 (2015).

    Article 

    Google Scholar 

  • 24.

    Ushio, M. et al. Environmental DNA enables detection of terrestrial mammals from forest pond water. Mol. Ecol. Resour. 17, e63–e75 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Williams, K. E., Huyvaert, K. P., Vercauteren, K. C., Davis, A. J. & Piaggio, A. J. Detection and persistence of environmental DNA from an invasive, terrestrial mammal. Ecol. Evol. 8, 688–695 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Merkes, C. M., McCalla, S. G., Jensen, N. R., Gaikowski, M. P. & Amberg, J. J. Persistence of DNA in carcasses, slime and avian feces may affect interpretation of environmental DNA data. PLoS ONE 9, e113346 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 27.

    Pont, D. et al. Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Sci. Rep. 8, 1–13 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 28.

    Zinger, L. et al. Advances and prospects of environmental DNA in neotropical rainforests. Adv. Ecol. Res. 62, 331–373 (2020).

    Article 

    Google Scholar 

  • 29.

    Withers, P. C., Cooper, C. E., Maloney, S. K., Bozinovic, F. & Cruz-Neto, A. P. Ecological and Environmental Physiology of Mammals Vol. 5 (Oxford University Press, 2016).

    Book 

    Google Scholar 

  • 30.

    Bicudo, J. E. P., Buttemer, W. A., Chappell, M. A., Pearson, J. T. & Bech, C. Ecological and Environmental Physiology of Birds Vol. 2 (Oxford University Press, 2010).

    Book 

    Google Scholar 

  • 31.

    Naidoo, R. & Burton, A. C. Relative effects of recreational activities on a temperate terrestrial wildlife assemblage. Conserv. Sci. Pract. 2, e271 (2020).

    Google Scholar 

  • 32.

    Cantera, I. et al. Optimizing environmental DNA sampling effort for fish inventories in tropical streams and rivers. Sci. Rep. 9, 1–11 (2019).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Tarboton, D. G., Bras, R. L. & Rodriguez-Iturbe, I. The fractal nature of river networks. Water Resour. Res. 24, 1317–1322 (1988).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Ishige, T. et al. Tropical-forest mammals as detected by environmental DNA at natural saltlicks in Borneo. Biol. Conserv. 210, 281–285 (2017).

    Article 

    Google Scholar 

  • 35.

    Joseph, L. N., Field, S. A., Wilcox, C. & Possingham, H. P. Presence–absence versus abundance data for monitoring threatened species. Conserv. Biol. 20, 1679–1687 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Lacy, R. C. Lessons from 30 years of population viability analysis of wildlife populations. Zoo Biol. 38, 67–77 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 37.

    Gärdenfors, U., Hilton-Taylor, C., Mace, G. M. & Rodríguez, J. P. The application of IUCN Red List criteria at regional levels. Conserv. Biol. 15, 1206–1212 (2001).

    Article 

    Google Scholar 

  • 38.

    Munro, R., Nielsen, S. E., Price, M., Stenhouse, G. & Boyce, M. S. Seasonal and diel patterns of grizzly bear diet and activity in west-central Alberta. J. Mammal. 87, 1112–1121 (2006).

    Article 

    Google Scholar 

  • 39.

    Deiner, K. & Altermatt, F. Transport distance of invertebrate environmental DNA in a natural river. PLoS ONE 9, e88786 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 40.

    Hunter, M. E. et al. Detection limits of quantitative and digital PCR assays and their influence in presence–absence surveys of environmental DNA. Mol. Ecol. Resour. 17, 221–229 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Roussel, J.-M., Paillisson, J.-M., Treguier, A. & Petit, E. The downside of eDNA as a survey tool in water bodies. J. Appl. Ecol. 52, 823–826 (2015).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Williams, B. K., Nichols, J. D. & Conroy, M. J. Analysis and Management of Animal Populations (Academic Press, 2002).

    Google Scholar 

  • 43.

    Burton, A. C. et al. Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52, 675–685 (2015).

    Article 

    Google Scholar 

  • 44.

    Morris, W. F. et al. Quantitative Conservation Biology (Sinauer Sunderland, 2002).

    Google Scholar 

  • 45.

    Parks, B. C. South Chilcotin Mountains Park and Big Creek Park Management Plan (2019).

  • 46.

    McLellan, M. L. et al. Divergent population trends following the cessation of legal grizzly bear hunting in southwestern British Columbia, Canada. Biol. Conserv. 233, 247–254 (2019).

    Article 

    Google Scholar 

  • 47.

    Kays, R. et al. Camera traps as sensor networks for monitoring animal communities. In 2009 IEEE 34th Conference on Local Computer Networks 811–818. https://doi.org/10.1109/LCN.2009.5355046 (IEEE, 2009).

  • 48.

    Hendry, H. & Mann, C. Camelot–intuitive software for camera trap data management. BioRxiv 203216 (2017).

  • 49.

    Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929–942 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA: For biodiversity research and monitoring (Oxford University Press, Oxford, 2018).

    Book 

    Google Scholar 

  • 51.

    Boyer, F. et al. obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    De Barba, M. et al. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: Application to omnivorous diet. Mol. Ecol. Resour. 14, 306–323 (2014).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 53.

    Schnell, I. B., Bohmann, K. & Gilbert, M. T. P. Tag jumps illuminated–reducing sequence-to-sample misidentifications in metabarcoding studies. Mol. Ecol. Resour. 15, 1289–1303 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Wearn, O. & Glover-Kapfer, P. Camera-trapping for conservation: A guide to best-practices. WWF Conserv. Technol. Ser. 1, 2019–2104 (2017).

    Google Scholar 

  • 55.

    R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).

    Google Scholar 

  • 56.

    Plummer, M., et al.. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing vol. 124, 1–10 (Vienna, Austria, 2003).

  • 57.

    Tuomisto, H. A diversity of beta diversities: Straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33, 2–22 (2010).

    Article 

    Google Scholar 

  • 58.

    Ahumada, J. A. et al. Community structure and diversity of tropical forest mammals: data from a global camera trap network. Philos. Trans. R. Soc. B Biol. Sci. 366, 2703–2711 (2011).

    Article 

    Google Scholar 

  • 59.

    Samejima, H., Ong, R., Lagan, P. & Kitayama, K. Camera-trapping rates of mammals and birds in a Bornean tropical rainforest under sustainable forest management. For. Ecol. Manag. 270, 248–256 (2012).

    Article 

    Google Scholar 

  • 60.

    Parsons, A. W. et al. Do occupancy or detection rates from camera traps reflect deer density?. J. Mammal. 98, 1547–1557 (2017).

    Article 

    Google Scholar 

  • 61.

    Sollmann, R., Mohamed, A., Samejima, H. & Wilting, A. Risky business or simple solution–Relative abundance indices from camera-trapping. Biol. Conserv. 159, 405–412 (2013).

    Article 

    Google Scholar 

  • 62.

    Villette, P., Krebs, C. J., Jung, T. S. & Boonstra, R. Can camera trapping provide accurate estimates of small mammal (Myodes rutilus and Peromyscus maniculatus) density in the boreal forest?. J. Mammal. 97, 32–40 (2016).

    Article 

    Google Scholar 

  • 63.

    Feldhamer, G. A., Thompson, B. C. & Chapman, J. A. Wild Mammals of North America: Biology, Management, and Conservation (The Johns Hopkins University Press, 2003).

    Google Scholar 

  • 64.

    Burnham, K. P. & Anderson, D. R. A Practical Information-Theoretic Approach. Model Selection Multimodel Inference 2nd edn, Vol. 2 (Springer, Berlin, 2002).

    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    Why the Earth needs a course correction now

    Diving into the global problem of technology waste