Elphick, C. S. Why study birds in rice fields?. Waterbirds 33(sp1), 1–7. https://doi.org/10.1675/063.033.s101 (2010).
Google Scholar
Machado, I. F. & Maltchik, L. Can management practices in rice fields contribute to amphibian conservation in southern Brazilian wetlands?. Aquat. Conserv. Mar. Freshw. Ecosyst. 20(1), 39–46 (2010).
Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: Is habitat heterogeneity the key?. Trends Ecol. Evol. 18(4), 182–188. https://doi.org/10.1016/S0169-5347(03)00011-9 (2003).
Google Scholar
Shuford, W. D., Humphrey, J. M. & Nur, N. Breeding status of the Black tern in California. West. Birds 32, 189–217 (2001).
Sánchez-Guzmán, J. M. et al. Identifying new buffer areas for conserving waterbirds in the Mediterranean basin: The importance of the rice fields in Extremadura, Spain. Biodivers. Conserv. 16(12), 3333–3344. https://doi.org/10.1007/s10531-006-9018-9 (2007).
Google Scholar
Lane, S. J. & Fujioka, M. The impact of changes in irrigation practices on the distribution of foraging egrets and herons (Ardeidae) in the rice fields of central Japan. Biol. Conserv. 83(2), 221–230. https://doi.org/10.1016/S0006-3207(97)00054-2 (1998).
Google Scholar
Bambaradeniya, C. N. B. et al. Biodiversity associated with an irrigated rice agro-ecosystem in Sri Lanka. Biodivers. Conserv. 13(9), 1715–1753. https://doi.org/10.1023/B:BIOC.0000029331.92656.de (2004).
Google Scholar
Donald, P. F. Biodiversity impacts of some agricultural commodity production systems. Conserv. Biol. 18(1), 17–38. https://doi.org/10.1111/j.1523-1739.2004.01803.x (2004).
Google Scholar
Steffen, W. et al. Sustainability. Planetary boundaries: Guiding human development on a changing planet. Science 347(6223), 1259855. https://doi.org/10.1126/science.1259855 (2015).
Google Scholar
Ramankutty, N. et al. Trends in global agricultural land use: Implications for environmental health and food security. Annu. Rev. Plant Biol. 69, 789–815. https://doi.org/10.1146/annurev-arplant-042817-040256,Pubmed:29489395 (2018).
Google Scholar
Le Féon, V. et al. Intensification of agriculture, landscape composition and wild bee communities: A large scale study in four European countries. Agric. Ecosyst. Environ. 137(1–2), 143–150. https://doi.org/10.1016/j.agee.2010.01.015 (2010).
Google Scholar
Donal, P. F., Gree, R. E. & Heath, M. F. Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc. Biol. Sci. 268(1462), 25–29. https://doi.org/10.1098/rspb.2000.1325,Pubmed:12123294 (2001).
Google Scholar
Gregory, R. D. et al. Developing indicators for European birds. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1454), 269–288. https://doi.org/10.1098/rstb.2004.1602 (2005).
Google Scholar
Beketov, M. A., Kefford, B. J., Schäfer, R. B. & Liess, M. Pesticides reduce regional biodiversity of stream invertebrates. Proc. Natl. Acad. Sci. U S A 110(27), 11039–11043. https://doi.org/10.1073/pnas.1305618110 (2013).
Google Scholar
Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11(2), 97–105. https://doi.org/10.1016/j.baae.2009.12.001 (2010).
Google Scholar
Van Dijk, T. C., Van Staalduinen, M. A. & Van der Sluijs, J. P. Macro-invertebrate decline in surface water polluted with Imidacloprid. PLoS ONE 8(5), e62374. https://doi.org/10.1371/journal.pone.0062374,Pubmed:23650513 (2013).
Google Scholar
Katayama, N., Baba, Y. G., Kusumoto, Y. & Tanaka, K. A review of post-war changes in rice farming and biodiversity in Japan. Agric. Syst. 132, 73–84. https://doi.org/10.1016/j.agsy.2014.09.001 (2015).
Google Scholar
Maeda, T. Patterns of bird abundance and habitat use in rice fields of the Kanto Plain, central Japan. Ecol. Res. 16(3), 569–585. https://doi.org/10.1046/j.1440-1703.2001.00418.x (2001).
Google Scholar
Nam, H. K., Choi, S. H., Choi, Y. S. & Yoo, J. C. Patterns of waterbirds abundance and habitat use in rice fields. Korean J. Environ. Agric. 31(4), 359–367. https://doi.org/10.5338/KJEA.2012.31.4.359 (2012).
Google Scholar
Choi, S. H., Nam, H. K. & Yoo, J. C. Characteristics of population dynamics and habitat use of shorebirds in rice fields during spring migration. Korean J. Environ. Agric. 33(4), 334–343. https://doi.org/10.5338/KJEA.2014.33.4.334 (2014).
Google Scholar
Elphick, C. S., Taft, O. & Lourenço, P. M. Management of rice fields for birds during the non-growing season. Waterbirds 33(sp1), 181–192. https://doi.org/10.1675/063.033.s114 (2010).
Google Scholar
Ibáñez, C., Curcó, A., Riera, X., Ripoll, I. & Sánchez, C. Influence on birds of rice field management practices during the growing season: A review and an experiment. Waterbirds 33(sp1), 167–180. https://doi.org/10.1675/063.033.s113 (2010).
Google Scholar
Sato, N. & Maruyama, N. Foraging site preference of intermediate egrets Egretta intermedia during the breeding season in the eastern part of the Kanto Plain, Japan. J. Yamashina Inst. Ornithol. 28(1), 19-34_1. https://doi.org/10.3312/jyio1952.28.19 (1996).
Google Scholar
Nam, H. K., Choi, Y. S., Choi, S. H. & Yoo, J. C. Distribution of waterbirds in rice fields and their use of foraging habitats. Waterbirds 38(2), 173–183. https://doi.org/10.1675/063.038.0206 (2015).
Google Scholar
Azuma, A. & Takeuchi, K. Relationships between population density of frogs and environmental conditions in Yatsu-habitat. J. Jpn. Inst. Landsc. Archit. 62(5), 573–576 (1999).
Google Scholar
Mullié, W. C. et al. The impact of Furadan 3g (carbofuran) applications on aquatic macroinvertebrates in irrigated rice in Senegal. Arch. Environ. Contam. Toxicol. 20(2), 177–182. https://doi.org/10.1007/BF01055902 (1991).
Google Scholar
Tourenq, C., Sadoul, N., Beck, N., Mesléard, F. & Martin, J. L. Effects of cropping practices on the use of rice fields by waterbirds in the Camargue, France. Agric. Ecosyst. Environ. 95(2–3), 543–549. https://doi.org/10.1016/S0167-8809(02)00203-7 (2003).
Google Scholar
Mesléard, F., Garnero, S., Beck, N. & Rosecchi, E. Uselessness and indirect negative effects of an insecticide on rice field invertebrates. C. R. Biol. 328(10–11), 955–962. https://doi.org/10.1016/j.crvi.2005.09.003,Pubmed:16286085 (2005).
Google Scholar
Osten, J. R. V., Soares, A. M. & Guilhermino, L. Black-bellied whistling duck (Dendrocygna autumnalis) brain cholinesterase characterization and diagnosis of anticholinesterase pesticide exposure in wild populations from Mexico. Environ. Toxicol. Chem. 24(2), 313–317. https://doi.org/10.1897/03-646.1,Pubmed:15719990 (2005).
Google Scholar
Katayama, N. et al. Organic farming and associated management practices benefit multiple wildlife taxa: A large-scale field study in rice paddy landscapes. J. Appl. Ecol. 56, 1970–1981. https://doi.org/10.1111/1365-2664.13446 (2019).
Google Scholar
Parsons, K. C., Mineau, P. & Renfrew, R. B. Effects of pesticide use in rice fields on birds. Waterbirds 33(sp1), 193–218. https://doi.org/10.1675/063.033.s115 (2010).
Google Scholar
Choi, G., Nam, H. K., Son, S. J., Seock, M. & Yoo, J. C. The impact of agricultural activities on habitat use by the Wood sandpiper and Common greenshank in rice fields. Ornithol. Sci. 20(1), 27–37 (2021).
Google Scholar
Choi, G., Nam, H. K., Son, S. J., Do, M. S. & Yoo, J. C. Effects of Pesticide Use on the Distributions of Grey Herons (Ardea cinerea) and Great Egrets (Ardea alba) in Rice Fields of the Republic of Korea. Zool. Sci. 38, 162–169. https://doi.org/10.2108/zs200079 (2021).
Google Scholar
Lourenço, P. M. & Piersma, T. Stopover ecology of Black-tailed Godwits Limosa limosa in Portuguese rice fields: A guide on where to feed in winter. Bird Study 55(2), 194–202. https://doi.org/10.1080/00063650809461522 (2008).
Google Scholar
Fujioka, M., Lee, S. D., Kurechi, M. & Yoshida, H. Bird use of rice fields in Korea and Japan. Waterbirds 33(sp1), 8–29. https://doi.org/10.1675/063.033.s102 (2010).
Google Scholar
Stafford, J. D., Kaminski, R. M. & Reinecke, K. J. Avian foods, foraging and habitat conservation in world rice fields. Waterbirds 33(sp1), 133–150. https://doi.org/10.1675/063.033.s110 (2010).
Google Scholar
Harwood, J. D., Sunderland, K. D. & Symondson, W. O. C. Living where the food is: web location by linyphiid spiders in relation to prey availability in winter wheat. J. Appl. Ecol. 38(1), 88–99. https://doi.org/10.1046/j.1365-2664.2001.00572.x (2001).
Google Scholar
Morris, A. J., Bradbury, R. B. & Wilson, J. D. Determinants of patch selection by yellowhammers Emberiza citrinella foraging in cereal crops. Aspects Appl. Biol. 67, 43–50 (2002).
Han, M. S. et al. Characteristics of benthic invertebrates in organic and conventional paddy field. Korean J. Environ. Agric. 32(1), 17–23. https://doi.org/10.5338/KJEA.2013.32.1.17 (2013).
Google Scholar
Dalzochio, M. S., Baldin, R., Stenert, C. & Maltchik, L. Can organic and conventional agricultural systems affect wetland macroinvertebrate taxa in rice fields?. Basic Appl. Ecol. 17(3), 220–229. https://doi.org/10.1016/j.baae.2015.10.009 (2016).
Google Scholar
Lourenço, P. M. & Piersma, T. Waterbird densities in south European rice fields as a function of rice management. Ibis 151(1), 196–199. https://doi.org/10.1111/j.1474-919X.2008.00881.x (2009).
Google Scholar
Dias, R. A., Blanco, D. E., Goijman, A. P. & Zaccagnini, M. E. Density, habitat use, and opportunities for conservation of shorebirds in rice fields in southeastern South America. Condor Ornithol. Appl. 116(3), 384–393. https://doi.org/10.1650/CONDOR-13-160.1 (2014).
Google Scholar
Kim, Y. H., Kang, S. M., Khan, A. L., Lee, J. H. & Lee, I. J. Aspect of weed occurrence by methods of weed control in rice field. Korean J. Weed Sci. 31(1), 89–95. https://doi.org/10.5660/KJWS.2011.31.1.089 (2011).
Google Scholar
Shin, H. S. et al. Monthly change of the length-weight relationship of the loach (Misgurnus anguillicaudatus) population in paddy fields by farming practices. Korean J. Environ. Biol. 36(1), 1–10. https://doi.org/10.11626/KJEB.2018.36.1.001 (2018).
Google Scholar
Elphick, C. S. & Oring, L. W. Winter management of Californian rice fields for waterbirds. J. Appl. Ecol. 35(1), 95–108. https://doi.org/10.1046/j.1365-2664.1998.00274.x (1998).
Google Scholar
Pernollet, C. A., Cavallo, F., Simpson, D., Gauthier-Clerc, M. & Guillemain, M. Seed density and waterfowl use of rice fields in Camargue, France. J. Wild. Manag. 81(1), 96–111. https://doi.org/10.1002/jwmg.21167 (2017).
Google Scholar
Firth, A. G. et al. Low external input sustainable agriculture: Winter flooding in rice fields increases bird use, fecal matter and soil health, reducing fertilizer requirements. Agric. Ecosyst. Environ. 300, 106962. https://doi.org/10.1016/j.agee.2020.106962 (2020).
Google Scholar
Manley, S. W., Kaminski, R. M., Reinecke, K. J. & Gerard, P. D. Waterbird foods in winter-managed ricefields in Mississippi. J. Wildl. Manag. 68(1), 74–83. https://doi.org/10.2193/0022-541X(2004)068[0074:WFIWRI]2.0.CO;2 (2004).
Google Scholar
Fraixedas, S., Burgas, D., Robson, D., Camps, J. & Barriocanal, C. Benefits of the European Agri-environment schemes for wintering lapwings: A case study from rice fields in the Mediterranean region. Waterbirds 43(1), 86–93. https://doi.org/10.1675/063.043.0109 (2020).
Google Scholar
Tourenq, C. et al. Spatial relationships between tree-nesting heron colonies and rice fields in the Camargue, France. Auk 121(1), 192–202. https://doi.org/10.1093/auk/121.1.192 (2004).
Google Scholar
Rural Research Institute. Management Effect of Environmentally-Friendly Agriculture Pilot Site: A Case Study on Project Office of Daeho Environment (Korea Rural Community Corporation, 2008).
Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69. https://doi.org/10.1007/BF00337288 (1982).
Google Scholar
Chon, T. S. Self-organizing maps applied to ecological sciences. Ecol. Inform. 6, 50–61. https://doi.org/10.1016/j.ecoinf.2010.11.002 (2011).
Google Scholar
Park, Y. S., Céréghino, R., Compin, A. & Lek, S. Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters. Ecol. Modell. 160(3), 265–280. https://doi.org/10.1016/S0304-3800(02)00258-2 (2003).
Google Scholar
Akande, A., Costa, A. C., Mateu, J. & Henriques, R. Geospatial analysis of extreme weather events in Nigeria (1985–2015) using self-organizing maps. Adv. Meteorol. https://doi.org/10.1155/2017/8576150 (2017).
Google Scholar
Park, Y. S., Chung, Y. J. & Moon, Y. S. Hazard ratings of pine forests to a pine wilt disease at two spatial scales (individual trees and stands) using self-organizing map and random forest. Ecol. Model. 13, 40–46. https://doi.org/10.1016/j.ecoinf.2012.10.008 (2013).
Google Scholar
Chon, T. S., Park, Y. S., Moon, K. H. & Cha, E. Y. Patternizing communities by using an artificial neural network. Ecol. Model. 90, 69–78. https://doi.org/10.1016/0304-3800(95)00148-4 (1996).
Google Scholar
Vesanto, J., Himberg, J., Alhoniemi, E. & Parhankangas, J. SOM Toolbox for MATLAB 5. Technical Report a57. SOM Toolbox Team, Helsinki University of Technology, Finland, 1–60. (2000). http://www.cis.hut.fi/projects/somtoolbox.
Moran, P. A. P. Notes on continuous stochastic phenomena. Biometrika 37(1–2), 17–23. https://doi.org/10.1093/biomet/37.1-2.17 (1950).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
Wehrens, R. & Kruisselbrink, J. Flexible self-organizing maps in Kohonen 3.0. J. Stat. Soft. 87(7), 1–18. https://doi.org/10.18637/jss.v087.i07 (2018).
Google Scholar
Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.4–4, https://CRAN.R-project.org/package=vegan (2017).
Bates, D., Maechler, M. & Bolker, B. lme4: Linear Mixed-Effects Models Using S4 Classes. R package version 0.999375-42, http://cran.r-project.org/package=lme4 (2014).
Rousset, F. & Ferdy, J.-B. Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography 37, 781–790. https://doi.org/10.1111/ecog.00566 (2014).
Google Scholar
Source: Ecology - nature.com