Hairston, N. G., Smith, F. E. & Lawrence, B. S. Community structure, population control, and competition. Am. Nat. 94, 421–425 (1960).
Google Scholar
Gross, P. Insect behavioral and morphological defenses against parasitoid. Annu. Rev. Entomol. 38, 251–273 (1993).
Google Scholar
Tylikinais, J. M., Tscharntke, T. & Klein, A. M. Diversity, ecosystem function and stability of parasitoid—host interactions across a tropical habitat gradient. Ecology 87, 3047–3057 (2006).
Google Scholar
Strand, M. R. & Obrycki, J. J. Host specificity of insect parasitoids and predators. Bioscience 46, 422–429 (1996).
Google Scholar
Dawkins, R. & Krebs, J. R. Arms races between and within species. Proc. R. Soc. Lond. B. 205, 489–511 (1979).
Google Scholar
Kraaijeveld, A. R., van Alphen, J. J. M. & Godfray, H. C. J. The coevolution of host resistance and parasitoid virulence. Parasitology 116, 29–45 (1998).
Google Scholar
Jeffries, M. J. & Lawton, J. H. Enemy free space and the structure of ecological communities. Biol. J. Linn. Soc. 23, 269–286 (1984).
Google Scholar
Grosman, A. H. et al. No adaptation of a herbivore to a novel host but loss of adaptation to its native host. Sci. Rep.-UK 5, 16211 (2015).
Google Scholar
Diamond, S. E. & Kingsolver, J. G. Fitness consequences of host plant choice: A field experiment. Oikos 119, 542–550 (2010).
Google Scholar
Meijer, K., Schilthuizen, M., Beukeboom, L. & Smit, C. A review and meta-analysis of the enemy release hypothesis in plant–herbivorous insect systems. PeerJ 4, e2778 (2016).
Google Scholar
Forbes, A. A., Powell, T. H., Stelinski, L. L., Smith, J. J. & Feder, J. L. Sequential sympatric speciation across trophic levels. Science 323, 776–779 (2009).
Google Scholar
Grosman, A. H., Holtz, A. M., Pallini, A., Sabelis, M. W. & Janssen, A. Parasitoids follow herbivorous insects to a novel host plant, generalist predators less so. Entomol. Exp. Appl. 162, 261–271 (2017).
Google Scholar
Soler, R., Bezemer, T. M., Van Der Putten, W. H., Vet, L. E. & Harvey, J. A. Root herbivore effects on above-ground herbivore, parasitoid and hyperparasitoid performance via changes in plant quality. J. Anim. Ecol. 74, 1121–1130 (2005).
Google Scholar
Ode, P. J. Plant chemistry and natural enemy fitness: Effects on herbivore and natural enemy interactions. Annu. Rev. Entomol. 51, 163–185 (2006).
Google Scholar
Thompson, J. N. Trade-offs in larval performance on normal and novel hosts. Entomol. Exp. Appl. 80, 133–139 (1996).
Google Scholar
Lucas, É., Coderre, D. & Brodeur, J. Intraguild predation among aphid predators: Characterization and influence of extraguild prey density. Ecology 79, 1084–1092 (1998).
Google Scholar
Henry, L. M., May, N., Acheampong, S., Gillespie, D. R. & Roitberg, B. D. Host-adapted parasitoids in biological control: Does source matter?. Ecol. Appl. 20, 242–250 (2010).
Google Scholar
Mackauer, M. Sexual size dimorphism in solitary parasitoid wasps: influence of host quality. Oikos 76, 265–272 (1996).
Google Scholar
Bezemer, T. M. & Mills, N. J. Clutch size decisions of a gregarious parasitoid under laboratory and feld conditions. Anim. Behav. 66, 1119–1128 (2003).
Google Scholar
Samková, A., Hadrava, J., Skuhrovec, J. & Janšta, P. Host population density and presence of predators as key factors influencing the number of gregarious parasitoid Anaphes flavipes offspring. Sci. Rep.-UK 9, 6081 (2019).
Google Scholar
Schmidt, J. M. & Smith, J. J. B. Correlations between body angles and substrate curvature in the parasitoid wasp Trichogramma minutum: a possible mechanism of host radius measurement. J. Exp. Biol. 125, 271–285 (1986).
Google Scholar
Boivin, G. & Baaren, J. The role of larval aggression and mobility in the transition between solitary and gregarious development in parasitoid wasps. Ecol. Lett. 3, 469–474 (2000).
Google Scholar
Mayhew, P. J. The evolution of gregariousness in parasitoid wasps. P. Roy. Soc. Lond. B. Bio. 265, 383–389 (1998).
Google Scholar
Pexton, J. J. & Mayhew, P. J. Competitive interactions between parasitoid larvae and the evolution of gregarious development. Oecologia 141, 179–190 (2004).
Google Scholar
Harvey, P. H. & Partridge, L. Murderous mandibles and black holes in hymenopteran wasps. Nature 326, 128–129 (1987).
Google Scholar
Godfray, H. C. J. The evolution of clutch size in parasitic wasps. Am. Nat. 129, 221–233 (1987).
Google Scholar
Rosenheim, J. A. Single-sex broods and the evolution of nonsiblicidal parasitoid wasps. Am. Nat. 141, 90–104 (1993).
Google Scholar
Mayhew, P. J. & van Alphen, J. J. Gregarious development in alysiine parasitoids evolved through a reduction in larval aggression. Anim. Behav. 58, 131–141 (1999).
Google Scholar
Pexton, J. J. & Mayhew, P. J. Immobility: The key to family harmony?. Trends. Ecol. Evol. 16, 7–9 (2001).
Google Scholar
Hamilton, W. D. Extraordinary sex ratios. Science 156, 477–488 (1967).
Google Scholar
Mayhew, P. J. & Hardy, I. C. Nonsiblicidal behavior and the evolution of clutch size in bethylid wasps. Am. Nat. 151, 409–424 (1998).
Google Scholar
Zaviezo, T. & Mills, N. Factors influencing the evolution of clutch size in a gregarious insect parasitoid. J. Anim. Ecol. 69, 1047–1057 (2000).
Google Scholar
Koppik, M., Tiel, A. & Hofmeister, T. S. Adaptive decision making or diferential mortality: What causes ofspring emergence in a gregarious parasitoid?. Entomol. Exp. Appl. 150, 208–216 (2014).
Google Scholar
Visser, M. E., Van Alphen, J. J. & Hemerik, L. Adaptive superparasitism and patch time allocation in solitary parasitoids: An ESS model. J. Anim. Ecol. 61, 93–101 (1992).
Google Scholar
Waage, J. K. & Ming, N. S. The reproductive strategy of a parasitic wasp: I. optimal progeny and sex allocation in Trichogramma evanescens. J. An. Ecol. 53, 401–415 (1984).
Google Scholar
Harvey, J. A., Poelman, E. H. & Tanaka, T. Intrinsic inter-and intraspecific competition in parasitoid wasps. Ann. Rev. Entomol. 58, 333–351 (2013).
Google Scholar
Harvey, J. A., Bezemer, T. M., Gols, R., Nakamatsu, Y. & Tanaka, T. Comparing the physiological effects and function of larval feeding in closely-related endoparasitoids (Braconidae: Microgastrinae). Physiol. Entomol. 33, 217–225 (2008).
Google Scholar
Cloutier, C., Duperron, J., Tertuliano, M. & McNeil, J. N. Host instar, body size and fitness in the koinobiotic parasitoid Aphidius nigripes. Entomol. Exp. Appl. 97, 29–40 (2000).
Google Scholar
Bai, B., Luck, R. F., Forster, L., Stephens, B. & Janssen, J. M. The effect of host size on quality attributes of the egg parasitoid Trichogramma pretiosum. Entomol. Exp. Appl. 64, 37–48 (1992).
Google Scholar
Kazmer, D. J. & Luck, R. F. Field tests of the size-fitness hypothesis in the egg parasitoid Trichogramma Pretiosum. Ecology 76, 412–425 (1995).
Google Scholar
Samková, A., Hadrava, J., Skuhrovec, J. & Janšta, P. Reproductive strategy as a major factor determining female body size and fertility of a gregarious parasitoid. J. Appl. Entomol. 143, 441–450 (2019).
Google Scholar
Wei, K., Tang, Y. L., Wang, X. Y., Cao, L. M. & Yang, Z. Q. The developmental strategies and related profitability of an idiobiont ectoparasitoid Sclerodermus pupariae vary with host size. Ecol. Entomol. 39, 101–108 (2014).
Google Scholar
May, R. M., Hassell, M. P., Anderson, M. R. & Tonkyn, D. V. Density dependence in host-parasitoid models. J. Anim. Ecol. 50, 855–865 (1981).
Google Scholar
Hoddle, M. S., Van Driesche, R. G., Elkinton, J. S. & Sanderson, J. P. Discovery and utilization of Bemisia argentifolii patches by Eretmocerus eremicus and Encarsia formosa (Beltsville strain) in greenhouses. Entomol. Exp. Appl. 87, 15–28 (1998).
Google Scholar
Samková, A., Raska, J., Hadrava, J. & Skuhrovec, J. An intergenerational approach for prediction of parasitoid population dynamics. BioRxiv. https://doi.org/10.1101/2021.02.22.432341 (2021).
Google Scholar
Anderson, R. C. & Paschke, J. D. The biology and ecology of Anaphes flavipes (Hymenoptera: Mymaridae), an exotic egg parasite of the cereal leaf beetle. Ann. Entomol. Soc. Am. 61, 1–5 (1968).
Google Scholar
Klomp, H. & Teerink, B. J. The significance of oviposition rates in the egg parasite Trichogramma embryophagum Htg. Arch. Neerl. Zool. 17, 350–375 (1967).
Google Scholar
Waage, J. K. & Lane, J. A. The reproductive strategy of a parasitic wasp: II. Sex allocation and local mate competition in Trichogramma evanescens. J. Anim. Ecol. 53, 417–426 (1984).
Google Scholar
Dysart, R. J., Maltby, H. L. & Brunson, M. H. Larval parasites of Oulema melanopus in Europe and their colonization in the United States. Entomophaga 18, 133–167 (1973).
Google Scholar
Skuhrovec, J. et al. Insecticidal activity of two formulations of essential oils against the cereal leaf beetle. Acta Agr. Scand. 68, 489–495 (2018).
Google Scholar
Jervis, M. A., Ellers, J. & Harvey, J. A. Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Annu. Rev. Entomol. 53, 361–385 (2008).
Google Scholar
Vinson, S. B. & Iwantsch, G. F. Host suitability for insect parasitoids. Ann. Rev. Entomol. 25, 397–419 (1980).
Google Scholar
Mackauer, M., Sequeira, R. & Otto, M. Growth and development in parasitoid wasps adaptation to variable host resources. In Vertical Food Web Interactions 191–203 (Springer, 1997).
Google Scholar
Ode, P. J. Plant toxins and parasitoid trophic ecology. Curr. Opin. Insect sci. 32, 118–123 (2019).
Google Scholar
Cronin, J. T. & Abrahamson, W. G. Do parasitoids diversify in response to host-plant shifts by herbivorous insects?. Ecol. Entomol. 26, 347–355 (2001).
Google Scholar
Sarfraz, M., Dosdall, L. M. & Keddie, B. A. Host plant nutritional quality affects the performance of the parasitoid Diadegma insulare. Biol. Control. 51, 34–41 (2009).
Google Scholar
Harvey, J. A. Factors affecting the evolution of development strategies in parasitoid wasps: The importance of functional constraints and incorporating complexity. Entomol. Exp. Appl. 117, 1–13 (2005).
Google Scholar
Cortesero, A. M. & Monge, J. P. Influence of pre-emergence experience on response to host and host plant odours in the larval parasitoid Eupelmus vuilleti. Entomol. Exp. Appl. 72, 281–288 (1994).
Google Scholar
Gandolfi, M., Mattiacci, L. & Dorn, S. Preimaginal learning determines adult response to chemical stimuli in a parasitic wasp. Proc. Roy. Soc. Lon. Series. B-Biol. Scien. 270, 2623–2629 (2003).
Google Scholar
Kester, K. M. & Barbosa, P. Postemergence learning in the insect parasitoid, Cotesia congregata (Say) (Hymenoptera: Braconidae). J. Insect Behav. 4, 727–742 (1991).
Google Scholar
Vet, L. E. & Groenewold, A. W. Semiochemicals and learning in parasitoids. J. Chem. Ecol. 16, 3119–3135 (1990).
Google Scholar
Samková, A., Hadrava, J., Skuhrovec, J. & Janšta, P. Effect of adult feeding and timing of host exposure on the fertility and longevity of the parasitoid Anaphes flavipes. Entomol. Exp. Appl. 167, 932–938 (2019).
Google Scholar
Jervis, M. A., Heimpel, G. E., Ferns, P. N., Harvey, J. A. & Kidd, N. A. Life-history strategies in parasitoid wasps: A comparative analysis of ‘ovigeny’. J. Anim. Ecol. 70, 442–458 (2001).
Google Scholar
Bjorksten, T. A. & Hoffmann, A. A. Persistence of experience effects in the parasitoid Trichogramma nr. brassicae. Ecol. Entomol. 23, 110–117 (1998).
Google Scholar
Lentz, A. J. & Kester, K. M. Postemergence experience affects sex ratio allocation in a gregarious insect parasitoid. J. Insect. Behav. 21, 34–45 (2008).
Google Scholar
Nishida, R. Sequestration of defensive substances from plants by Lepidoptera. Annu. Rev. Entomol. 47, 57–92 (2002).
Google Scholar
Zvereva, E. L. & Rank, N. E. Fly parasitoid Megaselia opacicornis uses defensive secretions of the leaf beetle Chrysomela lapponica to locate its host. Oecologia 140, 516–522 (2004).
Google Scholar
Roy, H. E., Handley, L. J. L., Schönrogge, K., Poland, R. L. & Purse, B. V. Can the enemy release hypothesis explain the success of invasive alien predators and parasitoids?. Biocontrol 56, 451–468 (2011).
Google Scholar
Snyder, W. E. & Ives, A. R. Interactions between specialist and generalist natural enemies: Parasitoids, predators, and pea aphid biocontrol. Ecology 84, 91–107 (2003).
Google Scholar
Polis, G. A., Myers, C. A. & Holt, R. D. The ecology and evolution of intraguild predation: Potential competitors that eat each other. Annu. Rev. Ecol. Syst. 20, 297–330 (1989).
Google Scholar
Nakashima, Y. & Senoo, N. Avoidance of ladybird trails by an aphid parasitoid Aphidius ervi: active period and efects of prior oviposition experience. Entomol. Exp. Appl. 109, 163–166 (2003).
Google Scholar
Samková, A., Raška, J., Hadrava, J., Skuhrovec, J. & Janšta, P. Female manipulation of offspring sex ratio in the gregarious parasitoid Anaphes flavipes from a new two-generation approach. BioRxiv https://doi.org/10.1101/2021.02.22.432331 (2021).
Google Scholar
Visser, M. E. The importance of being large: the relationship between size and fitness in females of the parasitoid Aphaereta minuta (Hymenoptera: Braconidae). J. Anim. Ecol. 63, 963–978 (1994).
Google Scholar
Banks, M. & Thomson, D. J. Lifetime mating success in the damselfly Coenagrion puella. Anim. Behav. 33, 1175–1183 (1985).
Google Scholar
Ellers, J. & Jervis, M. Body size and the timing of egg production in parasitoid wasps. Oikos 102, 164–172 (2003).
Google Scholar
Anderson, R. C. & Paschke, J. D. Additional Observations on the Biology of Anaphes flavipes (Hymenoptera: Mymaridae), with Special Reference to the Efects of Temperature and Superparasitism on Development. Ann. Entomol. Soc. Am. 62, 1316–1321 (1969).
Google Scholar
Bezděk, J. & Baselga, A. Revision of western Palaearctic species of the Oulema melanopus group, with description of two new species from Europe (Coleoptera: Chrysomelidae: Criocerinae). Acta. Ent. Mus. Nat. Pra. 55, 273–304 (2015).
R. Core Team R. A language and environment for statistical computing. R Foundation for Statistical Computing (R Core Team, 2020).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw 67, 1–48. (2015) URL: https://CRAN.R-project.org/package=Hmisc.
Harrell, F. E. Jr, Dupont, C., et mult. al. (2020) Hmisc: Harrell Miscellaneous. R package version 4.4–2. URL: https://CRAN.R-project.org/package=Hmisc.
Signorell et mult. al. (2021). DescTools: Tools for descriptive statistics. R package version 0.99.40. URL: https://cran.r-project.org/package=DescTools.
Source: Ecology - nature.com