McLean, J. E., Pabst, M. W., Miller, C. D., Dimkpa, C. O. & Anderson, A. J. Effect of complexing ligands on the surface adsorption, internalization, and bioresponse of copper and cadmium in a soil bacterium, Pseudomonas Putida. Chemosphere 91(3), 374–382. https://doi.org/10.1016/j.chemosphere.2012.11.071 (2013).
Google Scholar
Clemens, S. Metal ligands in micronutrient acquisition and homeostasis. Plant. Cell Environ. 42(10), 2902–2912. https://doi.org/10.1111/pce.13627 (2019).
Google Scholar
Ma, H. et al. Elucidation of the mechanisms into effects of organic acids on soil fertility, cadmium speciation and ecotoxicity in contaminated soil. Chemosphere 239, 124706. https://doi.org/10.1016/j.chemosphere.2019.124706 (2020).
Google Scholar
Ahmed, E. & Holmström, S. J. M. Siderophores in environmental research: Roles and applications. Microb. Biotechnol. 7(3), 196–208. https://doi.org/10.1111/1751-7915.12117 (2014).
Google Scholar
Butler, A. & Theisen, R. M. Iron(III)-siderophore coordination chemistry: Reactivity of marine siderophores. Coord. Chem. Rev. 254(3–4), 288–296. https://doi.org/10.1016/j.ccr.2009.09.010 (2010).
Google Scholar
Hider, R. C. & Kong, X. Chemistry and biology of siderophores. Nat. Prod. Rep. 27(5), 637. https://doi.org/10.1039/b906679a (2010).
Google Scholar
Kirby, M. E., Sonnenberg, J. L., Simperler, A. & Weiss, D. J. Stability series for the complexation of six key siderophore functional groups with uranyl using density functional theory. J. Phys. Chem. A 124(12), 2460–2472. https://doi.org/10.1021/acs.jpca.9b10649 (2020).
Google Scholar
Harrington, J. et al. Structural dependence of Mn complexation by siderophores: Donor group dependence on complex stability and reactivity. GCA. 88, 106–119 (2012).
Google Scholar
McRose, D. L., Seyedsayamdost, M. R. & Morel, F. M. M. Multiple siderophores: Bug or feature?. JBIC J. Biol. Inorg. Chem. 23(7), 983–993. https://doi.org/10.1007/s00775-018-1617-x (2018).
Google Scholar
Johnstone, T. C., Nolan, E. M. Beyond iron: Non-classical biological functions of bacterial siderophores. In Dalton Transactions. Royal Society of Chemistry April 14, 2015, pp 6320–6339. https://doi.org/10.1039/c4dt03559c.
Northover, G. H. R., Garcia-España, E. & Weiss, D. J. Unravelling the modus operandi of phytosiderophores during zinc uptake in rice: The importance of geochemical gradients and accurate stability constants. J. Exp. Bot. https://doi.org/10.1093/jxb/eraa580 (2020).
Google Scholar
Ghavami, N., Alikhani, H. A., Pourbabaee, A. A. & Besharati, H. Study the effects of siderophore-producing bacteria on zinc and phosphorous nutrition of canola and maize plants. Commun. Soil Sci. Plant Anal. 47(12), 1517–1527. https://doi.org/10.1080/00103624.2016.1194991 (2016).
Google Scholar
Weiss, D. et al. Isotope fractionation of zinc in the paddy rice soil-water environment and the role of 2’deoxymugineic acid (DMA) as zincophore under Zn limiting conditions. Chem. Geol. 577, 120271. https://doi.org/10.1016/j.chemgeo.2021.120271 (2021).
Google Scholar
Suzuki, M. et al. Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J. 48(1), 85–97. https://doi.org/10.1111/j.1365-313X.2006.02853.x (2006).
Google Scholar
Zaman, M. , Shahid, S. A., Heng, L., Shahid, S. A., Zaman, M., Heng, L. Soil salinity: Historical perspectives and a world overview of the problem. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques 43–53 (Springer, 2018). https://doi.org/10.1007/978-3-319-96190-3_2.
Alfarrah, N. & Walraevens, K. Groundwater overexploitation and seawater intrusion in coastal areas of arid and semi-arid regions. Water 10(2), 143. https://doi.org/10.3390/w10020143 (2018).
Google Scholar
Trenberth, K. Changes in precipitation with climate change. Clim. Res. 47(1), 123–138. https://doi.org/10.3354/cr00953 (2011).
Google Scholar
Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C. & Sanderson, B. M. Precipitation variability increases in a warmer climate. Sci. Rep. 7(1), 1–9. https://doi.org/10.1038/s41598-017-17966-y (2017).
Google Scholar
Errabii, T., Gandonou, C. H., Essalmani, H., Jamal; Senhaji, N. S. Effects of NaCl and mannitol induced stress on sugarcane (Saccharum Sp.) Callus Cultures. https://doi.org/10.1007/s11738-006-0006-1.
Saboora, A., Hajihashemi, S. & Khatam, B. NaCl tolerance of wheat genotypes at germination and early seedling growth article in Pakistan. J. Biol. Sci. https://doi.org/10.3923/pjbs.2006.2009.2021 (2006).
Google Scholar
Chand, M., Randhawa, N. S. & Bhumbla, D. R. Effectiveness of zinc chelates in zinc nutrition of greenhouse rice crop in a saline-sodic soil. Plant Soil 59(2), 217–225. https://doi.org/10.1007/BF02184195 (1981).
Google Scholar
Lores, E. M. & Pennock, J. R. The effect of salinity on binding of Cd, Cr, Cu and Zn to dissolved organic matter. Chemosphere 37(5), 861–874. https://doi.org/10.1016/S0045-6535(98)00090-3 (1998).
Google Scholar
Cigala, R. M. et al. Zinc(II) complexes with hydroxocarboxylates and mixed metal species with Tin(II) in different salts aqueous solutions at different ionic strengths: Formation, stability, and weak interactions with supporting electrolytes. Monatshefte fur Chemie 146(4), 527–540. https://doi.org/10.1007/s00706-014-1394-3 (2015).
Google Scholar
Laird, D. A., Koskinen, I. W. C. Triazine Soil Interactions. In The Triazine Herbicides 275–299 (Elsevier, 2008). https://doi.org/10.1016/B978-044451167-6.50024-6.
Cigala, R. M. et al. Speciation of Tin(II) in aqueous solution: Thermodynamic and spectroscopic study of simple and mixed hydroxocarboxylate complexes. Monatshefte fur Chemie 144(6), 761–772. https://doi.org/10.1007/s00706-013-0961-3 (2013).
Google Scholar
Daniele, P. G., Rigano, C. & Sammartano, S. Ionic strength dependence of formation constants-I protonation constants of organic and inorganic acids. Talanta 30(2), 81–87. https://doi.org/10.1016/0039-9140(83)80023-X (1983).
Google Scholar
Bretti, C., Foti, C. & Sammartano, S. A new approach in the use of sit in determining the dependence on ionic strength of activity coefficients. Application to Some Chloride Salts Of Interest In The Speciation Of Natural Fluids. Chem. Speciat. Bioavailab. 16(3), 105–110. https://doi.org/10.3184/095422904782775036 (2004).
Google Scholar
Bretti, C., De Stefano, C., Foti, C. & Sammartano, S. Critical evaluation of protonation constants. Literature analysis and experimental potentiometric and calorimetric data for the thermodynamics of phthalate protonation in different ionic media. J. Solution Chem. 35(9), 1227–1244. https://doi.org/10.1007/s10953-006-9057-6 (2006).
Google Scholar
Cigala, R. M. et al. Quantitative study on the interaction of Sn2+ and Zn2+ with some phosphate ligands, in aqueous solution at different ionic strengths. J. Mol. Liq. 165, 143–153. https://doi.org/10.1016/j.molliq.2011.11.002 (2012).
Google Scholar
Northover, G. H. R., Mao, Y., Hanif M. D., Blasco, S., Vilar, R., Garcia-Espana, E. & Weiss, D. J. The control of pH and ionic strength gradients on the interaction of low-molecular-weight organic acids and siderophores. ChemRxiv. Preprint (2021). https://doi.org/10.26434/chemrxiv.14706036.v1.
Domenico, P. A., Harris, D. R., Schwartz, F. W., Wiley, J., Chichester, N. Y., Brisbane, W. & Singapore, T. Physical and Chemical Hydrogeology 2nd edn.
Pankow, J.; Taylor & Francis Group. Aquatic Chemistry Concepts 2nd edn.
Graziano, G. Role of salts on the strength of pairwise hydrophobic interaction. Chem. Phys. Lett. 483(1–3), 67–71. https://doi.org/10.1016/j.cplett.2009.10.040 (2009).
Google Scholar
Mancera, R. L. Does salt increase the magnitude of the hydrophobic effect? A computer simulation study. Chem. Phys. Lett. 296(5–6), 459–465. https://doi.org/10.1016/S0009-2614(98)01080-X (1998).
Google Scholar
Mancera, R. L. Computer simulation of the effect of salt on the hydrophobic effect. J. Chem. Soc. Faraday Trans. 94(24), 3549–3559. https://doi.org/10.1039/a806899b (1998).
Google Scholar
Ghosh, T., Kalra, A. & Garde, S. On the salt-induced stabilization of pair and many-body hydrophobic interactions. J. Phys. Chem. B 109(1), 642–651. https://doi.org/10.1021/jp0475638 (2005).
Google Scholar
Papaneophytou, C. P., Grigoroudis, A. I., McInnes, C. & Kontopidis, G. Quantification of the effects of ionic strength, viscosity, and hydrophobicity on protein-ligand binding affinity. ACS Med. Chem. Lett. 5(8), 931–936. https://doi.org/10.1021/ml500204e (2014).
Google Scholar
Ghafoor, K., AL-Juhaimi, F., Ozcan, M. M. & Jahurul, M. H. A. Some nutritional characteristics and mineral contents in Barley (Hordeum Vulgare L.) seeds cultivated under salt stress. Qual. Assur. Saf. Crop. Foods 7(3), 363–368. https://doi.org/10.3920/QAS2013.0380 (2015).
Google Scholar
Akman, Z. Effects of plant growth regulators on nutrient content of young wheat and barley plants under
saline conditions. J. Anim. Vet. Adv. 8(10), 2018–2021 (2009).
Google Scholar
Yousfi, S., Houmani, H., Zribi, F., Abdelly, C. & Gharsalli, M. Physiological responses of wild and cultivated barley to the interactive effect of salinity and iron deficiency. (2012). https://doi.org/10.5402/2012/121983.
Alderighi, L. et al. Hyperquad simulation and speciation (HySS): A utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 184(1), 311–318. https://doi.org/10.1016/S0010-8545(98)00260-4 (1999).
Google Scholar
Gans, P. & O’Sullivan, B. GLEE: A new computer program for glass electrode calibration. Talanta 51(1), 33–37. https://doi.org/10.1016/s0039-9140(99)00245-3 (2000).
Google Scholar
Gans, P., Sabatini, A. & Vacca, A. Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43(10), 1739–1753. https://doi.org/10.1016/0039-9140(96)01958-3 (1996).
Google Scholar
Hu, W., Xie, J., Chau, H. W. & Si, B. C. Evaluation of parameter uncertainties in nonlinear regression using Microsoft excel spreadsheet. Environ. Syst. Res. 4(1), 1–12. https://doi.org/10.1186/s40068-015-0031-4 (2015).
Google Scholar
Harris, W. R., Raymond, K. N. & Weitl, F. L. Ferric ion sequestering agents. 6. The spectrophotometric and potentiometric evaluation of sulfonated tricatecholate ligands. J. Am. Chem. Soc. 103(10), 2667–2675. https://doi.org/10.1021/ja00400a030 (1981).
Google Scholar
Bravin, M. N., Tentscher, P., Rose, J. & Hinsinger, P. Rhizosphere PH Gradient Controls Copper Availability in a Strongly Acidic Soil. Environ. Sci. Technol. 43(15), 5686–5691. https://doi.org/10.1021/es900055k (2009).
Google Scholar
Gollany, H. T. & Schumacher, T. E. Combined use of colorimetric and microelectrode methods for evaluating rhizosphere PH. Plant Soil 154(2), 151–159. https://doi.org/10.1007/BF00012520 (1993).
Google Scholar
Kirk, G. J. D. Root ventilation, rhizosphere modification, and nutrient uptake by rice. In Systems Approaches for Agricultural Development 221–232 (Springer, Netherlands, 1993). https://doi.org/10.1007/978-94-011-2842-1_13.
Li, J. & Heap, A. D. Spatial interpolation methods applied in the environmental sciences: A review. In Environmental Modelling and Software 173–189 (Elsevier, 2014). https://doi.org/10.1016/j.envsoft.2013.12.008.
Gergely, A., Kiss, T. & Deák, G. Complexes of 3,4-dihydroxyphenyl derivatives. II. Complex formation processes in the Nickel(II)-L-DOPA and Zinc(II)-L-DOPA systems. Inorganica Chim. Acta 36(1), 113–120. https://doi.org/10.1016/S0020-1693(00)89379-2 (1979).
Google Scholar
Griesser, R. & Sigel, H. Ternary complexes in solution. XI. complex formation between the cobalt(h)-, nickel(ii)-, copper(ii)-, and zinc(II)-2,2′-bipyridyl 1:1 complexes and ethylenediamine, glycinate, or pyrocatecholate. Inorg. Chem. 10(10), 2229–2232. https://doi.org/10.1021/ic50104a028 (1971).
Google Scholar
Das, A. K. Studies on mixed ligand complexes of cobalt(II), nickel(II), copper(II) and zinc(II) involving 8-hydroxyquinoline-5-sulphonic acid as a primary ligand and substituted catechols as secondary ligands. Transition Met. Chem. 14, 200–209 (1989).
Google Scholar
Das, A. K. Astatistical aspects of the stabilities of ternary complexes of cobalt(II), nickel(II), copper(II) and zinc(II) involving amino-polycarboxylic acids and heteroaromatic N-bases as primary ligands and acetohydroxamic acid as a secondary ligand. Transition Met. Chem. 14, 66–68 (1989).
Google Scholar
Cannan, R. K. & Kibrick, A. Complex formation between carboxylic acids and divalent metal cations. J. Am. Chem. Soc. 60(10), 2314–2320. https://doi.org/10.1021/ja01277a012 (1938).
Google Scholar
Farkas, E., Brown, D. A., Cittaro, R. & Glass, W. K. Metal complexes of glutamic acid-γ-hydroxamic acid (Glu-γ-Ha) (N-hydroxyglutamine) in aqueous solution. J. Chem. Soc. Dalt. Trans. 18, 2803–2807. https://doi.org/10.1039/DT9930002803 (1993).
Google Scholar
Farkas, E., Enyedy, É. A. & Csóka, H. Some factors affecting metal ion-monohydroxamate interactions in aqueous solution. J. Inorg. Biochem. 79(1–4), 205–211. https://doi.org/10.1016/S0162-0134(99)00158-0 (2000).
Google Scholar
Warnke, Z. Investigation on divalent metal complexes with oxyacids in aqueous solutions. 6. Potentiometric investigation on copper(II), zinc(II), and cadmium(II) complexes with glycolic acd. Rocz. Chem. 43, 1939 (1969).
Google Scholar
Lengyel, T. Investigations on ion exchange equilibria with radioactive tracer method. 15. Liquid ion exchange technique for investigating mixed complex species of zinc with glycolic and alpha-hydroxyisobutyric acid. Acta Chim. Acad. Sci. Hung. 60, 373 (1969).
Google Scholar
Athavale, V. T., Prabhu, L. H. & Vartak, D. G. Solution stability constants of some metal complexes of derivatives of catechol. J. Inorg. Nucl. Chem. 28(5), 1237–1249. https://doi.org/10.1016/0022-1902(66)80450-5 (1966).
Google Scholar
Portanova, R., Lajunen, L. H. J., Tolazzi, M. & Piispanen, J. Critical evaluation of stability constants for α-hydroxycarboxylic acid complexes with protons and metal ions and the accompanying enthalpy changes: Part II. Aliphatic 2-hydroxycarboxylic acids (IUPAC technical report). Pure Appl. Chem. 75(4), 495–540. https://doi.org/10.1351/pac200375040495 (2003).
Google Scholar
Krężel, A. & Maret, W. The biological inorganic chemistry of zinc ions. Arch. Biochem. Biophys. 611, 3–19. https://doi.org/10.1016/j.abb.2016.04.010 (2016).
Google Scholar
Al-Sogair, F. M.; Operschall, B. P.; Sigel, A.; Sigel, H.; Schnabl, J.; Sigel, R. K. O. Probing the Metal-Ion-Binding Strength of the Hydroxyl Group. In Chemical Reviews. American Chemical Society August 10, 964–5003 (2011). https://doi.org/10.1021/cr100415s.
Gries, D., Brunn, S., Crowley, D. E. & Parker, D. R. Phytosiderophore release in relation to micronutrient metal deficiencies in Barley. Plant Soil 172(2), 299–308. https://doi.org/10.1007/BF00011332 (1995).
Google Scholar
Welch, R. M. & Shuman, L. Micronutrient nutrition of plants. CRC Crit. Rev. Plant Sci. 14(1), 49–82. https://doi.org/10.1080/07352689509701922 (1995).
Google Scholar
Arnold, T. et al. Evidence for the mechanisms of zinc uptake by rice using isotope fractionation. Plant. Cell Environ. 33(3), 370–381. https://doi.org/10.1111/j.1365-3040.2009.02085.x (2010).
Google Scholar
Haas, H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat. Prod. Rep. 31(10), 1266–1276. https://doi.org/10.1039/c4np00071d (2014).
Google Scholar
Griffin, A. S., West, S. A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature 430(7003), 1024–1027. https://doi.org/10.1038/nature02744 (2004).
Google Scholar
Wu, D. et al. Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS ONE 8(1), e55431. https://doi.org/10.1371/journal.pone.0055431 (2013).
Google Scholar
Widodo, Patterson, J. H.; Newbigin, E. et al.. Metabolic responses to salt stress of Barley (Hordeum Vulgare L.) cultivars, sahara and clipper, which differ in salinity tolerance. J. Exp. Bot. 60(14), 4089–4103 (2009). https://doi.org/10.1093/jxb/erp243
Google Scholar
Yang, C.-W. et al. Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of Barley plants. Phytosynthetica 47, 79–86 (2009).
Google Scholar
Source: Ecology - nature.com