in

Effects of both climate change and human water demand on a highly threatened damselfly

  • 1.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 2.

    Lionello, P. et al. In Mediterranean Climate Variability Vol. 4 (eds Lionello, P. et al.) 1–26 (Elsevier, 2006).

  • 3.

    Molina, M., Sánchez, E. & Gutiérrez, C. Future heat waves over the Mediterranean from an euro-coRDeX regional climate model ensemble. Sci. Rep. 10, 1–10 (2020).

    Article 
    CAS 

    Google Scholar 

  • 4.

    Bucchignani, E., Mercogliano, P., Panitz, H.-J. & Montesarchio, M. Climate change projections for the Middle East-North Africa domain with COSMO-CLM at different spatial resolutions. Adv. Clim. Change 9, 66–80 (2018).

    Article 

    Google Scholar 

  • 5.

    García, N., Cuttelod, A. & Malak, D. A. The Status and Distribution of Freshwater Biodiversity in Northern Africa (IUCN, 2010).

  • 6.

    Di Castri, F. & Mooney, H. A. Mediterranean Type Ecosystems: Origin and Structure Vol. 7 (Springer Science & Business Media, 2012).

  • 7.

    Stoks, R., Geerts, A. N. & De Meester, L. Evolutionary and plastic responses of freshwater invertebrates to climate change: Realized patterns and future potential. Evol. Appl. 7, 42–55 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Wellborn, G. A., Skelly, D. K. & Werner, E. E. Mechanisms creating community structure across a freshwater habitat gradient. Annu. Rev. Ecol. Evol. Syst. 27, 337–363 (1996).

    Article 

    Google Scholar 

  • 9.

    Arribas, P. et al. Dispersal ability rather than ecological tolerance drives differences in range size between lentic and lotic water beetles (Coleoptera: Hydrophilidae). J. Biogeogr. 39, 984–994 (2012).

    Article 

    Google Scholar 

  • 10.

    Hof, C., Brändle, M. & Brandl, R. Lentic odonates have larger and more northern ranges than lotic species. J. Biogeogr. 33, 63–70 (2006).

    Article 

    Google Scholar 

  • 11.

    Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).

    Article 

    Google Scholar 

  • 12.

    Ibàñez, C., Prat, N. & Canicio, A. Changes in the hydrology and sediment transport produced by large dams on the lower Ebro river and its estuary. Regul. Rivers Res. Manag. 12, 51–62 (1996).

    Article 

    Google Scholar 

  • 13.

    Kondolf, G., Rubin, Z. & Minear, J. Dams on the Mekong: Cumulative sediment starvation. Water Resour. Res. 50, 5158–5169 (2014).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Pringle, C. M., Freeman, M. C. & Freeman, B. J. Regional effects of hydrologic alterations on riverine macrobiota in the new world: Tropical-temperate comparisons. Bioscience 50, 807–823 (2000).

    Article 

    Google Scholar 

  • 15.

    Liu, X. et al. Effects of dams and their environmental impacts on the genetic diversity and connectivity of freshwater mussel populations in Poyang Lake Basin, China. Freshw. Biol. 65, 264–277 (2020).

    Article 

    Google Scholar 

  • 16.

    Barbarossa, V. et al. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc. Natl. Acad. Sci. U.S.A. 117, 3648–3655 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    López-Moreno, J. I. et al. Dam effects on droughts magnitude and duration in a transboundary basin: The Lower River Tagus, Spain and Portugal. Water Resour. Res. 45, W02405 (2009).

    ADS 
    Article 

    Google Scholar 

  • 18.

    McMahon, T. & Finlayson, B. Droughts and anti-droughts: The low flow hydrology of Australian rivers. Freshw. Biol. 48, 1147–1160 (2003).

    Article 

    Google Scholar 

  • 19.

    Aguiar, F. C. & Ferreira, M. T. Human-disturbed landscapes: effects on composition and integrity of riparian woody vegetation in the Tagus River basin, Portugal. Environ. Conserv. 32, 30–41 (2005).

    Article 

    Google Scholar 

  • 20.

    Costa, M. J., Vasconcelos, R., Costa, J. & Cabral, H. River flow influence on the fish community of the Tagus estuary (Portugal). Hydrobiologia 587, 113–123 (2007).

    Article 

    Google Scholar 

  • 21.

    Dallas, H. F. The influence of biotope availability on macroinvertebrate assemblages in South African rivers: Implications for aquatic bioassessment. Freshw. Biol. 52, 370–380 (2007).

    Article 

    Google Scholar 

  • 22.

    Demars, B. O., Kemp, J. L., Friberg, N., Usseglio-Polatera, P. & Harper, D. M. Linking biotopes to invertebrates in rivers: Biological traits, taxonomic composition and diversity. Ecol. Indic. 23, 301–311 (2012).

    Article 

    Google Scholar 

  • 23.

    Wallace, J. B. Recovery of lotic macroinvertebrate communities from disturbance. Environ. Manag. 14, 605–620 (1990).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Boulton, A. J. Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshw. Biol. 48, 1173–1185 (2003).

    Article 

    Google Scholar 

  • 25.

    Desrosiers, M. et al. Assessing anthropogenic pressure in the St. Lawrence River using traits of benthic macroinvertebrates. Sci. Total Environ. 649, 233–246 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Durance, I. & Ormerod, S. J. Climate change effects on upland stream macroinvertebrates over a 25-year period. Glob. Change Biol. 13, 942–957 (2007).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Santos, R. et al. Impacts of climate change and land-use scenarios on Margaritifera margaritifera, an environmental indicator and endangered species. Sci. Total Environ. 511, 477–488 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Junior, R. F. V. et al. Impacts of land use conflicts on riverine ecosystems. Land Use Policy 43, 48–62 (2015).

    Article 

    Google Scholar 

  • 29.

    Fonseca, A., Fernandes, L. S., Fontainhas-Fernandes, A., Monteiro, S. & Pacheco, F. The impact of freshwater metal concentrations on the severity of histopathological changes in fish gills: A statistical perspective. Sci. Total Environ. 599, 217–226 (2017).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 30.

    Ferreira, A., Fernandes, L. S., Cortes, R. & Pacheco, F. Assessing anthropogenic impacts on riverine ecosystems using nested partial least squares regression. Sci. Total Environ. 583, 466–477 (2017).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Fernandes, L. S., Fernandes, A., Ferreira, A., Cortes, R. & Pacheco, F. A partial least squares—Path modeling analysis for the understanding of biodiversity loss in rural and urban watersheds in Portugal. Sci. Total Environ. 626, 1069–1085 (2018).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 32.

    Intergovernmental Panel on Climate Change. Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects (Cambridge University Press, 2014).

  • 33.

    Khelifa, R. Flight period, apparent sex ratio and habitat preferences of the Maghribian endemic Calopteryx exul Selys, 1853 (Odonata: Zygoptera). Revue d’Ecologie (La Terre et La Vie) 68, 37–45 (2013).

    Google Scholar 

  • 34.

    Khelifa, R. & Mellal, M. K. Host-plant-based restoration as a potential tool to improve conservation status of odonate specialists. Insect Conserv. Divers. 10(2), 151–160. https://doi.org/10.1111/icad.12212 (2017).

    Article 

    Google Scholar 

  • 35.

    Khelifa, R. et al. A hotspot for threatened Mediterranean odonates in the Seybouse River (Northeast Algeria): Are IUCN population sizes drastically underestimated?. Int. J. Odonatol. 19, 1–11. https://doi.org/10.1080/13887890.2015.1133331 (2016).

    Article 

    Google Scholar 

  • 36.

    Boudot, J.-P. Calopteryx exul. The IUCN Red List of Threatened Species 2018 e.T60287A72725790. https://doi.org/10.2305/IUCN.UK.2018-2301.RLTS.T60287A72725790.en. Downloaded on 72725729 January 72722021. (2018).

  • 37.

    Martin, R. Contribution à l’étude des Neuroptères de l’Afrique. II. Les odonates du département de Constantine. Ann. Soc. Entomol. Fr. 79, 95–104 (1910).

    Google Scholar 

  • 38.

    Chelli, A., Zebsa, R. & Khelifa, R. Discovery of a new population of the endangered Calopteryx exul in central North Algeria (Odonata: Calopterygidae). Not. Odonatol. 9, 150–154 (2019).

    Google Scholar 

  • 39.

    Feyen, L. & Dankers, R. Impact of global warming on streamflow drought in Europe. J. Geophys. Res. Atmos. 114, D17116 (2009).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Schneider, C., Laizé, C., Acreman, M. & Florke, M. How will climate change modify river flow regimes in Europe?. Hydrol. Earth Syst. Sci. 17, 325–339 (2013).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Strayer, D. L. & Dudgeon, D. Freshwater biodiversity conservation: Recent progress and future challenges. J. North Am. Benthol. Soc. 29, 344–358 (2010).

    Article 

    Google Scholar 

  • 43.

    Van Vliet, M. & Zwolsman, J. Impact of summer droughts on the water quality of the Meuse river. J. Hydrol. 353, 1–17 (2008).

    ADS 
    Article 

    Google Scholar 

  • 44.

    Caruso, B. Temporal and spatial patterns of extreme low flows and effects on stream ecosystems in Otago, New Zealand. J. Hydrol. 257, 115–133 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 45.

    Stanley, E. H., Fisher, S. G. & Grimm, N. B. Ecosystem expansion and contraction in streams. Bioscience 47, 427–435 (1997).

    Article 

    Google Scholar 

  • 46.

    Truchy, A. et al. Habitat patchiness, ecological connectivity and the uneven recovery of boreal stream ecosystems from an experimental drought. Glob. Change Biol. 26, 3455–3472 (2020).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Boulton, A. J. & Lake, P. S. Effects of drought on stream insects and its ecological consequences. Aquatic insects: Challenges to populations 81–102 (CABI, 2008).

  • 48.

    Andersen, C. B., Lewis, G. P. & Sargent, K. A. Influence of wastewater-treatment effluent on concentrations and fluxes of solutes in the Bush River, South Carolina, during extreme drought conditions. Environ. Geosci. 11, 28–41 (2004).

    Article 

    Google Scholar 

  • 49.

    Wada, Y., Van Beek, L. P., Wanders, N. & Bierkens, M. F. Human water consumption intensifies hydrological drought worldwide. Environ. Res. Lett 8, 034036 (2013).

    ADS 
    Article 

    Google Scholar 

  • 50.

    Aldous, A., Fitzsimons, J., Richter, B. & Bach, L. Droughts, floods and freshwater ecosystems: Evaluating climate change impacts and developing adaptation strategies. Mar. Freshw. Res. 62, 223–231 (2011).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Conley, D. J. et al. Controlling eutrophication: Nitrogen and phosphorus. Science 123, 1014–1015 (2009).

    Article 

    Google Scholar 

  • 52.

    Park, T.-J. et al. Development of water quality criteria of ammonia for protecting aquatic life in freshwater using species sensitivity distribution method. Sci. Total Environ. 634, 934–940 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Reggam, A., Bouchelaghem, E.-H., Hanane, S. & Houhamdi, M. Effects of anthropogenic activities on the quality of surface water of Seybouse River (northeast of the Algeria). Arab. J. Geosci. 10, 219 (2017).

    Article 
    CAS 

    Google Scholar 

  • 54.

    Khelifa, R. et al. Long-range movements of an endangered endemic damselfly Calopteryx exul Selys, 1853 (Calopterygidae: Odonata). Afr. J. Ecol. 52, 375–377 (2014).

    Google Scholar 

  • 55.

    Khelifa, R. Partial bivoltinism and emergence patterns in the North African endemic damselfly Calopteryx exul: Conservation implications. Afr. J. Ecol. 55, 145–151 (2017).

    Article 

    Google Scholar 

  • 56.

    Adams, H. D. et al. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-chang-type drought. Proc. Natl. Acad. Sci. U.S.A. 106, 7063–7066 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Scrimgeour, G. J. & Winterbourn, M. J. Effects of floods on epilithon and benthic macroinvertebrate populations in an unstable New Zealand river. Hydrobiologia 171, 33–44 (1989).

    Article 

    Google Scholar 

  • 58.

    Giller, P., Sangpradub, N. & Twomey, H. Catastrophic flooding and macroinvertebrate community structure. Verh. Int. Ver. Theor. Angew. Limnol. 24, 1724–1729 (1991).

    Google Scholar 

  • 59.

    Siva-Jothy, M. T., Gibbons, D. W. & Pain, D. Female oviposition-site preference and egg hatching success in the damselfly Calopteryx splendens xanthostoma. Behav. Ecol. Sociobiol. 37, 39–44 (1995).

    Article 

    Google Scholar 

  • 60.

    Stettmer, C. Colonisation and dispersal patterns of banded (Calopteryxsplendens) and beautiful demoiselles (C. virgo) (Odonata: Calopterygidae) in south-east German streams. Eur. J. Entomol. 93, 579–593 (1996).

    Google Scholar 

  • 61.

    Chaput-Bardy, A., Grégoire, A., Baguette, M., Pagano, A. & Secondi, J. Condition and phenotype-dependent dispersal in a damselfly, Calopteryx splendens. PLoS ONE 5, e10694 (2010).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 62.

    Ward, L. & Mill, P. Long range movements by individuals as a vehicle for range expansion in Calopteryx splendens (Odonata: Zygoptera). Eur. J. Entomol. 104, 195 (2007).

    Article 

    Google Scholar 

  • 63.

    Mellal, M. K., Bensouilah, M., Houhamd, M. & Khelifa, R. Reproductive habitat provisioning promotes survival and reproduction of the endangered endemic damselfly Calopteryx exul. J. Insect Conserv. 22, 563–570 (2018).

    Article 

    Google Scholar 

  • 64.

    Cordero-Rivera, A. & Stoks, R. In Dragonflies and Damselflies: Model Organisms for Ecological and Evolutionary Research (ed. Córdoba-Aguilar, A.) 7–20 (Oxford University Press, 2008).

  • 65.

    Iglesias, A., Garrote, L., Flores, F. & Moneo, M. Challenges to manage the risk of water scarcity and climate change in the Mediterranean. Water Resour. Manag. 21, 775–788 (2007).

    Article 

    Google Scholar 

  • 66.

    Barnett, T. P. et al. Human-induced changes in the hydrology of the western United States. Science 319, 1080–1083 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Samways, M. J. et al. Value of artificial ponds for aquatic insects in drought-prone southern Africa: A review. Biodivers. Conserv. 29, 3131–3150 (2020).

    Article 

    Google Scholar 

  • 68.

    Deacon, C., Samways, M. J. & Pryke, J. S. Aquatic insects decline in abundance and occupy low-quality artificial habitats to survive hydrological droughts. Freshw. Biol. 64, 1643–1654 (2019).

    Article 

    Google Scholar 

  • 69.

    Briggs, A. J., Pryke, J. S., Samways, M. J. & Conlong, D. E. Complementarity among dragonflies across a pondscape in a rural landscape mosaic. Insect Conserv. Divers. 12, 241–250 (2019).

    Article 

    Google Scholar 

  • 70.

    Geist, J. Integrative freshwater ecology and biodiversity conservation. Ecol. Indic. 11, 1507–1516 (2011).

    Article 

    Google Scholar 

  • 71.

    Brooks, A. J., Chessman, B. C. & Haeusler, T. Macroinvertebrate traits distinguish unregulated rivers subject to water abstraction. J. North Am. Benthol. Soc. 30, 419–435 (2011).

    Article 

    Google Scholar 

  • 72.

    Garibaldi, L. A. et al. Working landscapes need at least 20% native habitat. Conserv. Lett. https://doi.org/10.1111/conl.12773 (2020).

    Article 

    Google Scholar 

  • 73.

    Vincent, A. & Fleury, P. Development of organic farming for the protection of water quality: Local projects in France and their policy implications. Land Use Policy 43, 197–206 (2015).

    Article 

    Google Scholar 

  • 74.

    Bengtsson, J., Ahnström, J. & Weibull, A. C. The effects of organic agriculture on biodiversity and abundance: A meta-analysis. J. Appl. Ecol. 42, 261–269 (2005).

    Article 

    Google Scholar 

  • 75.

    Lichtenberg, E. M. et al. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob. Change Biol. 23, 4946–4957 (2017).

    ADS 
    Article 

    Google Scholar 

  • 76.

    ABHCSM. A.G.I.R.E (Agence nationale de la gestion intégrée des ressources en eau) (2016). Rapport sur l’analyse de l’année hydrologique (2015–2016) du barrage Hammam Debagh. Agence de bassin hydrographique Constantinois-Seybouse-Mellegue (2016).

  • 77.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • 78.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3. 10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article 

    Google Scholar 

  • 79.

    Wildlife Conservation Society—WCS and Center for International Earth Science Information Network—CIESIN—Columbia University (NASA Socioeconomic Data and Applications Center (SEDAC), 2005).

  • 80.

    Vicente-Serrano, S. M. & Staff. The Climate Data Guide: Standardized Precipitation Evapotranspiration Index (SPEI). Retreived from https://climatedataguide.ucar.edu/climate-data/standardized-precipitation-evapotranspiration-index-spei (2015).

  • 81.

    D’Orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Change Biol. 24, 2339–2351 (2018).

    ADS 
    Article 

    Google Scholar 

  • 82.

    Khelifa, R. Females ‘assist’ sneaker males to dupe dominant males in a rare endemic damselfly: Sexual conflict at its finest. Ecology 100, e02811 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 83.

    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  • 84.

    Laake, J. RMark: An R Interface for Analysis of Capture–Recapture Data with MARK, AFSC Processed Rep 2013-01 (Alaska Fish. Sci. Cent., NOAA, National Marine Fisheries Service, 2013).

  • 85.

    Burnham, K. P. Design and Analysis Methods for Fish Survival Experiments Based on Release-Recapture Vol. 5 (America Fisheries Society Monograph, 1987).

  • 86.

    Amstrup, S. C., McDonald, T. L. & Manly, B. F. Handbook of Capture–Recapture Analysis (Princeton University Press, 2010).


  • Source: Ecology - nature.com

    Metabolic capabilities mute positive response to direct and indirect impacts of warming throughout the soil profile

    Reproductive performance in houbara bustard is affected by the combined effects of age, inbreeding and number of generations in captivity