in

Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings

  • 1.

    Ali, B. et al. Physiological and ultra-structural changes in Brassica napus seedlings induced by cadmium stress. Biol Plant 58(1), 131–138 (2014).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Tang, Y. et al. Cadmium-accumulator straw application alleviates cadmium stress of lettuce (Lactuca sativa) by promoting pgotosynthetic activity and antioxidative enzyme activities. Environ. Sci. pollut. Res. 25, 30671–30679 (2018).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Jia, L. et al. Hormesis effects induced by cadmium on growth and photosynthetic performance in a hyperaccumulator, Lonicera japonica. Thunb. J Plant Growth Regul 34(1), 13–21 (2015).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Gallego, S. M., Benavides, M. P. (2019) Cadmium-induced oxidative and nitrosative stress in plants. Cadmium Toxicity and Tolerance in Plants. Elsevier, pp. 233–274.

  • 5.

    Rizwan, M. et al. Cadmium minimization in wheat: a critical review. Ecotoxicol. Environ. Saf. 130, 43–53 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Zou, J. et al. Transcriptional, physiological and cytological analysis validated the roles of some key genes linked Cd stress in Salix matsudanaKoidz. Environ. Exp. Bot. 134, 116–129 (2017).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Chen, H. C. et al. The effects of exogenous organic acids on the growth, photosynthesis and cellular ultrastructure of Salix variegata Franch Under Cd stress. Ecotoxicol. Environ. Saf. 187, 1–10 (2020).

    Google Scholar 

  • 8.

    Sarvajeet, S. G., Nafees, A. K. & Narendra, T. Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci. 182, 112–120 (2011).

    Google Scholar 

  • 9.

    Daniel, H., Tereza, C., Tom´a, V. & Radka, P. The effect of nanoparticles on the photosynthetic pigments in cadmium-zinc interactions. Environ. Sci. Pollut. Res. 26(4), 4147–4151 (2019).

    Article 
    CAS 

    Google Scholar 

  • 10.

    Tian, X. et al. Measurement of metal bioaccessibility in vegetables to improve human exposure assessments: field study of soil–plant–atmosphere transfers in urban areas South China. Environ. Geochem. Health 38(6), 1283–1301 (2016).

    Article 
    CAS 

    Google Scholar 

  • 11.

    He, J. et al. A transcriptomic network underlies microstructural and physiological responses to cadmium in Populus× _canescens. Plant Physiol. 162, 424–439 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    He, J. et al. Cadmium tolerance in six poplar species. Environ. Sci. Pollut. Res. 20, 163–174 (2013).

    CAS 
    Article 

    Google Scholar 

  • 13.

    He, N. et al. Draft genome sequence of the mulberry tree Morus notabilis. Nat. Commun. 4, 1–9 (2013).

    Article 
    CAS 

    Google Scholar 

  • 14.

    Wu, P., Luo, Z. (1981) Precious sassafras of Guizhou[J]. Guizhou Forest. Sci. Technol.

  • 15.

    Flora of China, 1982, vol. 31, p. 238.

  • 16.

    Xiyou, C. Study on Growth of Sassafras in different Mixed ways[J]. Anhui Forest. Sci. Technol. 4, 9–11 (2015).

    Google Scholar 

  • 17.

    Cheng Yong, Wu. et al. Storage test of sassafras seeds[J]. Hunan Forest. Sci. Technol. 2, 28–30 (2014).

    Google Scholar 

  • 18.

    Shen, Y. et al. Study on biomass and productivity of natural secondary Sassafras Mixed Forest[J]. J. Central South Univ. Forest. Technol. 5, 26–30 (2011).

    Google Scholar 

  • 19.

    Jin, Y. Q. et al. Efficient adsorption of methylene blue and lead ions in aqueous solutions by 5-sulfosalicylic acid modified lignin[J]. Int. J. Biol. Macromol. 123, 50–58 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Cheng, Y. F. et al. Rapid method for protein quantitation by Bradford assay after elimination of the interference of polysorbate 80[J]. Anal Biochem 494, 37–39 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Abdelgawad, H., Zinta, G., Badreldin, A. H., et al. (2019) Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity[J]. Environ. Pollut., p. 113705

  • 22.

    Donahue, J. L. et al. Responses of antioxidants to paraquat in pea leaves (relationships to resistance) [J]. Plant Physiol 113(1), 249–257 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Merey, H. A. et al. Validated UPLC method for the determination of guaiphenesin, oxeladin citrate, diphenhydramine, and sodium benzoate in their quaternary mixture used in treatment of cough, in the presence of guaiphenesin-related substance (guaiacol)[J]. Chem. Pap. 72(9), 2247–2254 (2018).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Beers, R. F. & Sizer, I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase[J]. J. Biol. Chem. 195(1), 133–140 (1952).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Zhao, F. J., Jiang, R. F., Dunham, S. J. & McGrath, S. P. Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol. J. 172, 646–654 (2006).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Lichtenthaler, H. K. & Wellburn, A. R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Analysis 11(5), 591–592 (1983).

    CAS 

    Google Scholar 

  • 27.

    Zipiao, Ye. Andvances in models of photosynthetic response to light and CO2[J]. Chin. J. Plant Ecol. 06, 727–740 (2010).

    Google Scholar 

  • 28.

    Saidi, I. et al. Oxidative damages induced by short-term exposure to cadmium in bean plants: protective role of salicylic acid. S Afr. J. Bot. 85, 32–38 (2013).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Anwaar, S. A. et al. Silicon (Si) alleviates cotton (Gossypium hirsutum L.) fromzinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage. Environ. Sci. Pollut. Res. 22, 3441–3450 (2014).

    Article 
    CAS 

    Google Scholar 

  • 30.

    Fuzhong, Wu. et al. Effects of cadmium stress on the growth, nutrient accumulation, distribution and utilization of Osmanthus fragrans. J. Plant Ecol. 34(10), 1220–1226 (2010).

    Google Scholar 

  • 31.

    Cengiz, K., Nudrat, A., Akram, M., Ashraf, M., Nasser, A., Parvaiz, A. (2020) Exogenously supplied silicon (Si) improves cadmium tolerance in pepper (Capsicum annuum L.) by upregulating the synthesis of nitric oxide and hydrogen sulfide[J]. J. Biotechnol., p. 316

  • 32.

    Wang, H. et al. Effects of cadmium stress at different concentrations on photosynthesis, lipid peroxidation and antioxidant enzyme activities in maize seedlings [J]. J. Plant Nutrition Fertilizer 14(01), 36–42 (2008).

    CAS 

    Google Scholar 

  • 33.

    Awasthi, P., Mahajan, V., Jamwal, V. L. et al. (2016) Cloning and expression analysis of chalcone synthase gene from Coleus forskohlii. J. Genet.

  • 34.

    Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G. & Sharma, S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 30(3), 161–175 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Chen, H. et al. H2O2 mediates nitrate-induced iron chlorosis by regulating iron homeostasis in rice. Plant Cell Environ. 41, 767–781 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Kohli, S. K., Khanna, K., Bhardwaj, R., Abd_Alla, E. F., Corpas, F. J. (2019) Assessment of subcellular ros and no metabolism in higher plants: multifunctional signaling molecules. Antioxidants, vol 8, no 12

  • 37.

    Meng Jie, A. & Hai Jiang, W. Effects of modifiers on the growth, photosynthesis, and antioxidant enzymes of cotton under cadmium toxicity. J. Plant Growth Regulat. 38, 1196–1205 (2019).

    Article 
    CAS 

    Google Scholar 

  • 38.

    Wei, X. et al. Effects of different breaking dormancy ways on the photosynthetic characteristics and activities of protective enzymes of ‘misty’ blueberry leaves. Sci. Agric. Sin. 48(22), 4517–4528 (2015).

    CAS 

    Google Scholar 

  • 39.

    Chaabene, Z. et al. Copper toxicity and date palm (Phoenix dactylifera) seedling tolerance: monitoring of related biomarkers. Environ. Toxicol. Chem. 37(3), 797–806 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Ozfidan-Konakci, C. et al. The humic acid-induced changes in the water status, chlorophyll fluorescence and antioxidant defense systems of wheat leaves with cadmium stress. Ecotoxicol. Environ. Saf. 155, 66–75 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Liu, Q. S. et al. Transcriptomic responses of dove tree (Davida involucrata Baill) to heat stress at the seedling stage[J]. Forest 10(8), 656 (2019).

    Article 

    Google Scholar 

  • 42.

    Yang, L. P. et al. Effect of Cd on growth, physiological response, Cd subcellular distribution and chemical forms of Koelreuteria paniculate[J]. Ecotox Environ. Safe 160, 10–18 (2018).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Zhang, Y. L. et al. The physiological characteristics of ornamental kale for cold resistance[J]. Act. Agric. 31(4), 168–176 (2016).

    CAS 

    Google Scholar 

  • 44.

    Rady, M. M. & Hemida, K. A. Modulation of cadmium toxicity and enhancing cadmium-tolerance in wheat seedlings by exogenous application of polyamines. Ecotoxicol Environ. Saf 119, 178–185 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Chen, Y. H. et al. Study on the characteristics of proline and active oxygen metabolism in red sea under salt stress [J]. J. Xiamen Univ. Nat. Sci. 43(03), 402–405 (2004).

    CAS 

    Google Scholar 

  • 46.

    Niu, M. G. et al. Effects of drought, waterlogging and low temperature stress on physiological and biochemical characteristics of wheat [J]. Seed 04, 17–19 (2003).

    Google Scholar 

  • 47.

    Deng, F.-F., Yang, S.-L. & Gong, M. Regulation of proline metabolism in abiotic plants by cell signaling molecules [J]. J. Plant Physiol. 51(10), 1573–1582 (2015).

    CAS 

    Google Scholar 

  • 48.

    Samuel, D. et al. Proline inhibits aggre-gation during protein refolding[J]. Protein Sci. 9(2), 344–352 (2010).

    Article 

    Google Scholar 

  • 49.

    Abd Allah, E. F. et al. Calcium application enhances growth and alleviates the damaging effects induced by Cd stress in sesame (Sesamum indicum L.). J. Plant Interact. 12(1), 237–243 (2017).

    Article 
    CAS 

    Google Scholar 

  • 50.

    Zhang, X. D. et al. Annotation and characterization of Cd-responsive metal transporter genes in rapeseed (Brassica napus). Bio Metals 31(1), 107–121 (2018).

    CAS 

    Google Scholar 

  • 51.

    Chen, K. et al. Physiological response and cold resistance evaluation of the leaves of Parashorea chinensis seedlings to low temperature stress[J]. J NW For Univ 34(3), 67–73 (2019).

    CAS 

    Google Scholar 

  • 52.

    Ge, W. & Jiao, Y. Changes of soluble protein content of two poplar trees under cadmium stress [J]. Modern Agric. Sci. Technol. 1, 199–200 (2012).

    Google Scholar 

  • 53.

    Aina, R. et al. Thiol-petide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. rotts[J]. Environ. Exp. Botany 59(3), 381–392 (2007).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Xu, J. J. et al. Effects of Cd stress on antioxidant enzymes activity of Sonchus asper L. Hill and Zea mays L. in intercropping system[J]. J. Yunnan Agric. Univ. Nat Sci. Ed. 30(2), 348–355 (2016).

    Google Scholar 

  • 55.

    Hendrik, K., Frithjof, K. & Martin, S. Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants[J]. J. Exp. Bot. 47(2), 259–266 (1996).

    Article 

    Google Scholar 

  • 56.

    Chen, X. X. et al. Effects of thallium and cadmiun stress on the growth and photosynthetic characteristics of Arundinacea[J]. Guangxi Plants 39(6), 743–751 (2019).

    Google Scholar 

  • 57.

    Ahanger, M. A., U Aziz, Alsahli, A. A., Alyemeni, M. N., Ahmad, P. (2020). Combined kinetin and spermidine treatments ameliorate growth and photosynthetic inhibition in vigna angularis by up-regulating antioxidant and nitrogen metabolism under cadmium stress. Biomolecules, vol. 10, no 1

  • 58.

    Sun Xiaolin, Xu. et al. Response of photosynthetic pigments in plant leaves to shading[J]. Chin. J. Plant Ecol. 34(8), 989–999 (2010).

    Google Scholar 

  • 59.

    Chen, X.-X. et al. Effects of cadmium stress on growth and photosynthetic characteristics of asparagus spears[J]. Plants Guangxi 39(6), 743–751 (2019).

    Google Scholar 

  • 60.

    Lu, Y. et al. Effects of heavy metals on photosynthetic and physiological growth characteristics of halophytes[J]. Acta Botanica Northwestern Sinica 31(2), 370–376 (2011).

    CAS 

    Google Scholar 

  • 61.

    Farquhar, G. D. & Sharkey, T. D. Stomatal Conductance and Photosynthesis[J]. Annu. Rev. Plant Physiol. 33(1), 317–345 (1982).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Haizhen, W. et al. Response of chlorophyll fluorescence characteristics to high temperature in heteromorphous leaves of Populus eureka [J]. Acta Ecol. Sin. 9, 100–109 (2011).

    Google Scholar 

  • 63.

    Liyuan, Li. et al. Photosynthetic light response simulation of leaves of Quercus variabilis and Robinia pseudoacacia under different light environments[J]. Chin. J. Appl. Ecol. 29(7), 2295–2306 (2016).

    Google Scholar 

  • 64.

    Wang, F.-K. et al. Photosynthetic light response curve of Populus microphylla under different slope orientation[J]. Water Soil Conservat. Res. 22(113), 182–187 (2015).

    Google Scholar 

  • 65.

    Xin, Qi., Qunfang, C. & Yulong, F. Adaptation of photosynthesis to growth light intensity in seedlings of three tree species of Putaoia in tropical rain forest [J]. Chin. J. Plant Ecol. 01, 34–41 (2004).

    Google Scholar 


  • Source: Ecology - nature.com

    Ekotrope makes building energy-efficient homes easier

    Using mechanics for cleaner membranes