in

Effects of climate variation on bird escape distances modulate community responses to global change

  • 1.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

  • 2.

    Pearson, R. G. & Dawson, T. E. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12, 361–371 (2003).

    Article 

    Google Scholar 

  • 3.

    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 4.

    Dunn, P. O. Changes in timing of breeding and reproductive success in birds. in Effects of Climate Change on Birds, 2nd edn. (eds. Dunn, P. O. & Møller, A. P.). 108–119 (Oxford University Press, 2019).

  • 5.

    Peterson, A. T. et al. Ecological Niches and Geographic Distributions (Princeton University Press, 2011).

  • 6.

    Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 7.

    Staniczenko, P. P. A., Sivasubramaniam, P., Suttle, K. B. & Pearson, R. G. Linking macroecology and community ecology: Refining predictions of species distributions using biotic interaction networks. Ecol. Lett. 20, 693–707 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Mendoza, M. & Araújo, M. B. Climate shapes mammal community trophic structures and humans simplify them. Nature Commun. 10, 1–9 (2019).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Bartley, T. J. et al. Food web rewiring in a changing world. Nat. Ecol. Evol. 3, 345–354 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 10.

    Beever, E. A. et al. Behavioral flexibility as a mechanism for coping with climate change. Front. Ecol. Environ. 15, 299–308 (2017).

    Article 

    Google Scholar 

  • 11.

    Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T. & Ferrier, S. Space can substitute for time in predicting climate-change effects on biodiversity. Proc. Nat. Acad. Sci. USA 110, 9374–9379 (2013).

    CAS 
    PubMed 
    ADS 
    Article 

    Google Scholar 

  • 12.

    Blumstein, D. T. Developing an evolutionary ecology of fear: How life history and natural history traits affect disturbance tolerance in birds. Anim. Behav. 71, 389–399 (2006).

    Article 

    Google Scholar 

  • 13.

    Díaz M. et al. The geography of fear: A latitudinal gradient in anti-predator escape distances of birds across Europe. PLoS One 8, e64634 (2013).

  • 14.

    Samia, D. S., Nakagawa, S., Nomura, F., Rangel, T. F. & Blumstein, D. T. Increased tolerance to humans among disturbed wildlife. Nat. Commun. 6, 8877 (2015).

    CAS 
    PubMed 
    PubMed Central 
    ADS 
    Article 

    Google Scholar 

  • 15.

    Samia, D. S. M. et al. Rural-urban difference in escape behavior of European birds across a latitudinal gradient. Front. Ecol. Evol. 55, 6 (2017).

    Google Scholar 

  • 16.

    Møller, A. P. Urban areas as refuges from predators and flight distance of prey. Behav. Ecol. 23, 1030–1035 (2012).

    Article 

    Google Scholar 

  • 17.

    Møller, A. P. The value of a mouthful: Flight initiation distance as an opportunity cost. Eur. J. Ecol. 1, 43–51 (2015).

    Article 

    Google Scholar 

  • 18.

    Møller, A. P. et al. Urban habitats and feeders both contribute to flight initiation distance reduction in birds. Behav. Ecol. 26, 861–865 (2015).

    Article 

    Google Scholar 

  • 19.

    Møller, A. P., Grim, T., Ibáñez-Álamo, J. D., Markó, G. & Tryjanowski, P. Change in flight distance between urban and rural habitats following a cold winter. Behav. Ecol. 24, 1211–1217 (2013).

    Article 

    Google Scholar 

  • 20.

    Møller, A. P. Life history, predation and flight initiation distance in a migratory bird. J. Evol. Biol. 27, 1105–1113 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 21.

    Carrete, M. Heritability of fear of humans in urban and rural populations of a bird species. Sci. Rep. 6, 1–6 (2016).

    Article 

    Google Scholar 

  • 22.

    Díaz, M. et al. Interactive effects of fearfulness and geographical location on bird population trends. Behav. Ecol. 26, 716–721 (2015).

    Article 

    Google Scholar 

  • 23.

    Møller, A. P. & Díaz, M. Avian preference for close proximity to human habitation and its ecological consequences. Curr. Zool. 64, 623–630 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 24.

    Møller, A. P. & Díaz, M. Niche segregation, competition and urbanization. Curr Zool. 64, 145–152 (2018).

    Article 

    Google Scholar 

  • 25.

    Cox, A. R., Robertson, R. J., Lendvai, Á. Z., Everitt, K. & Bonier, F. Rainy springs linked to poor nestling growth in a declining avian aerial insectivore (Tachycineta bicolor). Proc. R. Soc. B 286, 20190018 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 26.

    Sergio, F. From individual behaviour to population pattern: weather-dependent foraging and breeding performance in black kites. Anim. Behav. 66, 1109–1117 (2003).

    Article 

    Google Scholar 

  • 27.

    Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions?. Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).

    Article 

    Google Scholar 

  • 28.

    Sol, D. et al. Risk-taking behavior, urbanization and the pace of life in birds. Behav. Ecol. Sociobiol. 72, 59 (2018).

    Article 

    Google Scholar 

  • 29.

    Møller, A. P. et al. Effects of urbanization on animal phenology: A continental study of paired urban and rural avian populations. Clim. Res. 66, 185–199 (2015).

    Article 

    Google Scholar 

  • 30.

    Winter, Y. & Von Helversen, O. The energy cost of flight: Do small bats fly more cheaply than birds?. J. Comp. Physiol. B 168, 105–111 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Møller, A. P., Erritzøe, J. & Nielsen, J. T. Causes of interspecific variation in susceptibility to cat predation on birds. Chin. Birds 1, 97–111 (2010).

    Article 

    Google Scholar 

  • 32.

    Møller, A. P. et al. Spatial consistency in susceptibility of prey species to predation by two Accipiter hawks. J. Avian Biol. 43, 390–396 (2012).

    Article 

    Google Scholar 

  • 33.

    Creel, S. & Christianson, D. Relationships between direct predation and risk effects. Trends Ecol. Evol. 23, 194–201 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 34.

    Morelli, F. et al. Insurance for the future? Potential avian community resilience in cities across Europe. Clim. Change 159, 195–214 (2020).

    ADS 
    Article 

    Google Scholar 

  • 35.

    Storchová, L. & Hořák, D. Life-history characteristics of European birds. Glob. Ecol. Biogeogr. 27, 400–406 (2018).

    Article 

    Google Scholar 

  • 36.

    Garamszegi, L. Z. & Møller, A. P. Effects of sample size and intraspecific variation in phylogenetic comparative studies: a meta-analytic review. Biol. Rev. 85, 797–805 (2010).

    PubMed 

    Google Scholar 

  • 37.

    Bell, G. A comparative method. Am. Nat. 133, 553–571 (1989).

    Article 

    Google Scholar 

  • 38.

    Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).

    Article 

    Google Scholar 

  • 39.

    Lipsey, M. W. & Wilson, D. B. Practical Meta-Analysis. https://www.campbellcollaboration.org/escalc/html/EffectSizeCalculator-Home.php (Sage, 2001).

  • 40.

    Cohen, J. Statistical Power Analysis for the Behavioral Sciences (L. Erlbaum Associates, 1988).


  • Source: Ecology - nature.com

    Helarchaeota and co-occurring sulfate-reducing bacteria in subseafloor sediments from the Costa Rica Margin

    Canopy distribution and microclimate preferences of sterile and wild Queensland fruit flies