Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).
Wethey, D. S. Biogeography, competition, and microclimate: The barnacle Chthamalus fragilis in New England. Integr. Comp. Biol. 42, 872–880 (2002).
Google Scholar
Heikkinen, R. K., Luoto, M., Virkkala, R., Pearson, R. G. & Körber, J.-H. Biotic interactions improve prediction of boreal bird distributions at macro-scales. Glob. Ecol. Biogeogr. 16, 754–763 (2007).
Bøhn, T. & Amundsen, P.-A. The competitive edge of an invading specialist. Ecology 82, 2150–2163 (2001).
Barger, C. P. & Kitaysky, A. S. Isotopic segregation between sympatric seabird species increases with nutritional stress. Biol. Lett. 8, 442–445 (2012).
Google Scholar
Gosselink, T. E., Deelen, T. R. V., Warner, R. E. & Joselyn, M. G. Temporal habitat partitioning and spatial use of coyotes and red foxes in East-Central Illinois. J. Wildl. Manag. 67, 90 (2003).
Odden, M., Wegge, P. & Fredriksen, T. Do tigers displace leopards? If so why?. Ecol. Res. 25, 875–881 (2010).
Pickett, E. P. et al. Spatial niche partitioning may promote coexistence of Pygoscelis penguins as climate-induced sympatry occurs. Ecol. Evol. 8, 9764–9778 (2018).
Google Scholar
Navarro, J. et al. Ecological segregation in space, time and trophic niche of sympatric planktivorous petrels. PLoS ONE 8, e62897 (2013).
Google Scholar
Reif, J., Reifová, R., Skoracka, A. & Kuczyński, L. Competition-driven niche segregation on a landscape scale: Evidence for escaping from syntopy towards allotopy in two coexisting sibling passerine species. J. Anim. Ecol. 87, 774–789 (2018).
Google Scholar
Trego, C. T., Merriam, E. R. & Petty, J. T. Non-native trout limit native brook trout access to space and thermal refugia in a restored large-river system. Restor. Ecol. 27, 892–900 (2019).
Durant, S. M. Competition refuges and coexistence: An example from Serengeti carnivores. J. Anim. Ecol. 67, 370–386 (1998).
Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).
Google Scholar
Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl. Acad. Sci. 115, 11982–11987 (2018).
Google Scholar
Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ responses to climate change. Nature 525, 515–518 (2015).
Google Scholar
Elmhagen, B. et al. Homage to Hersteinsson and Macdonald: Climate warming and resource subsidies cause red fox range expansion and Arctic fox decline. Polar Res. 36, 3 (2017).
IPCC. Climate change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2014).
Spielhagen, R. F. et al. Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science 331, 450–453 (2011).
Google Scholar
Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5, 673–677 (2015).
Google Scholar
Descamps, S. et al. Climate change impacts on wildlife in a High Arctic archipelago: Svalbard Norway. Glob. Change Biol. 23, 490–502 (2017).
Google Scholar
Descamps, S., Strøm, H. & Steen, H. Decline of an arctic top predator: Synchrony in colony size fluctuations, risk of extinction and the subpolar gyre. Oecologia 173, 1271–1282 (2013).
Google Scholar
Garðarsson, A., Guðmundsson, G. A. & Lilliendahl, K. Svartfugl í íslenskum fuglabjörgum 2006–2008. Bliki 33, 35–46 (2019).
Merkel, F. et al. Declining trends in the majority of Greenland’s thick-billed murre (Uria lomvia) colonies 1981–2011. Polar Biol. 37, 1061–1071 (2014).
Fauchald, P. et al. The status and trends of seabirds breeding in Norway and Svalbard. 84 (2015).
Williams, A. J. Site preferences and interspecific competition among guillemots Uria aalge (L.) and Uria lomvia (L.) on Bear Island. Ornis Scand. 5, 113 (1974).
Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. 83(1), 301–309. https://doi.org/10.1016/j.anbehav.2011.10.031 (2012).
Luque, S. P. An Introduction to the diveMove Package. 56 (2007).
Luque, S. P. & Fried, R. Recursive filtering for zero offset correction of diving depth time series with GNU R Package diveMove. PLoS ONE 6, e15850 (2011).
Google Scholar
QGIS Development Team. QGIS Geographic Information System. (Open Source Geospatial Foundation Project. http://qgis.osgeo.org, 2018).
Fieberg, J. & Kochanny, C. O. Quantifying home-range overlap: The importance of the Utilization Distribution. J. Wildl. Manag. 69, 1346–1359 (2005).
Calenge, C. The package adehabitat for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).
Geange, S. W., Pledger, S., Burns, K. C. & Shima, J. S. A unified analysis of niche overlap incorporating data of different types. Methods Ecol. Evol. 2, 175–184 (2011).
Lewis, S., Sherratt, T. N., Hamer, K. C. & Wanless, S. Evidence of intra-specific competition for food in a pelagic seabird. Nature 412, 816–819 (2001).
Google Scholar
Linnebjerg, J. F. et al. Sympatric breeding auks shift between dietary and spatial resource partitioning across the annual cycle. PLoS ONE 8, e72987 (2013).
Google Scholar
McFarlane Tranquilla, L. A. et al. Multiple-colony winter habitat use by murres Uria spp. in the Northwest Atlantic Ocean: Implications for marine risk assessment. Mar. Ecol. Prog. Ser. 472, 287–303 (2013).
Google Scholar
Pratte, I., Robertson, G. & Mallory, M. Four sympatrically nesting auks show clear resource segregation in their foraging environment. Mar. Ecol. Prog. Ser. 572, 243–254 (2017).
Google Scholar
Kokubun, N. et al. Foraging segregation of two congeneric diving seabird species breeding on St. George Island, Bering Sea. Biogeosciences 13, 2579–2591 (2016).
Google Scholar
Barger, C. P., Young, R. C., Will, A., Ito, M. & Kitaysky, A. S. Resource partitioning between sympatric seabird species increases during chick-rearing. Ecosphere 7, e01447 (2016).
Huffeldt, N. P. & Merkel, F. R. Sex-specific, inverted rhythms of breeding-site attendance in an Arctic seabird. Biol. Lett. 12, 20160289 (2016).
Google Scholar
Kappes, M. A. et al. Reproductive constraints influence habitat accessibility, segregation, and preference of sympatric albatross species. Mov. Ecol. 3, 34 (2015).
Google Scholar
Benvenuti, S., Bonadonna, F., Dall’Antonia, L. & Gudmundsson, G. A. Foraging flights of breeding thick-billed murres (Uria lomvia) as revealed by bird-borne direction recorders. Auk 115, 57–66 (1998).
Hunt, G. L., Bakken, V. & Mehlum, F. Marine birds in the Marginal Ice Zone of the Barents Sea in late winter and spring. Arctic 49, 53–61 (1996).
Hein, C., Öhlund, G. & Englund, G. Future distribution of Arctic Char Salvelinus alpinus in Sweden under climate change: Effects of temperature, lake size and species interactions. Ambio 41(Suppl 3), 303–312 (2012).
Google Scholar
Mehlum, F., Watanuki, Y. & Takahashi, A. Diving behaviour and foraging habitats of Brünnich’s guillemots (Uria lomvia) breeding in the High-Arctic. J. Zool. 255, 413–423 (2001).
Frederiksen, M. et al. Seabird baseline studies in Baffin Bay, 2008–2013. Colony-based fieldwork at Kippaku and Apparsuit, NW Greenland. Report No. 110. (Aarhus University, DCE – Danish Centre for Environment and Energy, Roskilde, Denmark., 2014).
Spagnolo, M. & Clark, C. D. A geomorphological overview of glacial landforms on the Icelandic continental shelf. J. Maps 5, 37–52 (2009).
Meier, W. N. et al. Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Rev. Geophys. 52, 185–217 (2014).
Google Scholar
Gaston, A. J., Smith, P. A. & Provencher, J. F. Discontinuous change in ice cover in Hudson Bay in the 1990s and some consequences for marine birds and their prey. ICES J. Mar. Sci. 69, 1218–1225 (2012).
Grémillet, D. et al. Arctic warming: nonlinear impacts of sea-ice and glacier melt on seabird foraging. Glob. Change Biol. 21, 1116–1123 (2015).
Google Scholar
Valdimarsson, H., Astthorsson, O. S. & Palsson, J. Hydrographic variability in Icelandic waters during recent decades and related changes in distribution of some fish species. ICES J. Mar. Sci. 69, 816–825 (2012).
Source: Ecology - nature.com