in

Effects of different straw biochar combined with microbial inoculants on soil environment in pot experiment

  • 1.

    Briskin, D. P. Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiol. 124, 507–514. https://doi.org/10.1104/pp.124.2.507 (2000).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Shibata, S. Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J. Korean Med. Sci. 16, 28–37. https://doi.org/10.3346/jkms.2001.16.S.S28 (2001).

    Article 

    Google Scholar 

  • 3.

    Yuan, H. D. et al. Ginseng and diabetes: The evidences from in vitro, animal and human studies. J. Ginseng Res. 36, 27–39. https://doi.org/10.5142/jgr.2012.36.1.27 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Li, C. et al. Research and implementation of good agricultural practice for traditional Chinese medicinal materials in Jilin Province, China. J. Ginseng Res. 38, 227–232. https://doi.org/10.1016/j.jgr.2014.05.007 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Liu, M., Li, S., Xing, Y. & Ma, F. Identification of ginseng rust Rot fungus. J. Plant Pathol. 3, 183–185. https://doi.org/10.13926/j.cnki.apps.1984.03.012 (1984).

    Article 

    Google Scholar 

  • 6.

    Liu, Z., Chen, X. & Han, Y. Research on Ginseng rust rot pathogen under natural overwintering conditions. Northern Horticult. 3, 160–163. https://doi.org/10.11937/bfyy.201703037 (2017).

    Article 

    Google Scholar 

  • 7.

    Wang, Q. et al. Analysis of rhizosphere bacterial and fungal communities associated with rusty root disease of Panax ginseng. Appl. Soil. Ecol. 138, 245–252. https://doi.org/10.1016/j.apsoil.2019.03.012 (2019).

    Article 

    Google Scholar 

  • 8.

    Rafael, L.-C., Juan Arturo, R.-S. & Montserrat, C.-S. Microencapsulation of Meyerozyma guilliermondii by spray drying using sodium alginate and soy protein isolate as wall materials: A biocontrol formulation for anthracnose disease of mango. Biocontrol Sci. Technol. 30, 1116–1132. https://doi.org/10.1080/09583157.2020.1793910 (2020).

    Article 

    Google Scholar 

  • 9.

    Moparthi, S. & Bradshaw, M. Fungicide efficacy trials for the control of powdery mildew (Podosphaera cerasi) on sweet cherry trees (Prunus avium). Biocontrol Sci. Tech. 30, 659–670. https://doi.org/10.1080/09583157.2020.1755616 (2020).

    Article 

    Google Scholar 

  • 10.

    Zhou, C. Y. et al. Identification and optimization of fermentation conditions of antagonistic endophytic fungi in a single plant of Panax ginseng. Henan Agricult. Sci. 49, 104–110. https://doi.org/10.15933/j.cnki.1004-3268.2020.02.013 (2020).

    Article 

    Google Scholar 

  • 11.

    Sun, Z. et al. Biological control ginseng grey mold and plant colonization by antagonistic bacteria isolated from rhizospheric soil of Panax ginseng Meyer. Biol. Control 138, 104048. https://doi.org/10.1016/j.biocontrol.2019.104048 (2019).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Kambo, H. S. & Dutta, A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew. Sustain. Energy Rev. 45, 359–378. https://doi.org/10.1016/j.rser.2015.01.050 (2015).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Lehmann, J., Gaunt, J. & Rondon, M. Bio-char sequestration in terrestrial ecosystems—a review. Mitig. Adapt. Strat. Glob. Change 11, 403–427. https://doi.org/10.1007/s11027-005-9006-5 (2006).

    Article 

    Google Scholar 

  • 14.

    Uzoma, K. C. et al. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. https://doi.org/10.1111/j.1475-2743.2011.00340.x (2011).

    Article 

    Google Scholar 

  • 15.

    Baiamonte, G. et al. Structure alteration of a sandy-clay soil by biochar amendments. J. Soils Sedim. https://doi.org/10.1007/s11368-014-0960-y (2015).

    Article 

    Google Scholar 

  • 16.

    Lehmann, J. Bio-energy in the black. Front. Ecol. Environ. 5, 381–387. https://doi.org/10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 (2007).

    Article 

    Google Scholar 

  • 17.

    Ding, Y., Liu, J. & Wang, Y. Effects of biochar on soil microbial ecology. Chin. J. Appl. Ecol. 24, 3311–3317 (2013).

    CAS 

    Google Scholar 

  • 18.

    Solaiman, Z. M. et al. Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Soil Res. 48, 546–554. https://doi.org/10.1071/SR10002 (2010).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Zheng, J. et al. Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China. Sci. Total Environ. 571, 206–217. https://doi.org/10.1016/j.scitotenv.2016.07.135 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 20.

    Gul, S. et al. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agr. Ecosyst. Environ. 206, 46–59. https://doi.org/10.1016/j.agee.2015.03.015 (2015).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Zhang, W. et al. Utilization potential, industrial model and development strategy of straw biochar in Northeast China. Sci. Agric. Sin. 52, 2406–2424. https://doi.org/10.3864/j.issn.0578-1752.2019.14.003 (2019).

    Article 

    Google Scholar 

  • 22.

    Mao, H. et al. Improvement of biochar and bacterial powder addition on gaseous emission and bacterial community in pig manure compost. Bioresour. Technol. 258, 195–202. https://doi.org/10.1016/j.biortech.2018.02.082 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 23.

    Yumin, D. et al. Positive impact of biochar alone and combined with bacterial consortium amendment on improvement of bacterial community during cow manure composting. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2019.02.026 (2019).

    Article 

    Google Scholar 

  • 24.

    Ghodhbane-Gtari, F. et al. Draft Genome Sequence of Frankia sp. Strain CN3, an Atypical, Noninfective (Nod-) Ineffective (Fix-) Isolate from Coriaria nepalensis. Genome Announc. 1, e0008513. https://doi.org/10.1128/genomeA.00085-13 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 25.

    Jung-Tai, L. & Sung-Ming, T. The nitrogen-fixing Frankia significantly increases growth, uprooting resistance and root tensile strength of Alnus formosana. Afr. J. Biotech. 17, 213–225. https://doi.org/10.5897/AJB2017.16289 (2018).

    Article 

    Google Scholar 

  • 26.

    Du, D., Yuan, F., Li, R., Wang, Y. & Cui, G. A study on the classification and identification of a Frankia strain. Acta Microbiol. Sin. 25, 197–203. https://doi.org/10.13343/j.cnki.wsxb.1985.03.003 (1985).

    Article 

    Google Scholar 

  • 27.

    Kang, L. et al. Field study on inoculation of Casuarina casuarina with Franklinella calcium alginate. Forest Res. 01, 42–46. https://doi.org/10.13275/j.cnki.lykxyj.2000.01.006 (2000).

    Article 

    Google Scholar 

  • 28.

    Larkin, R. P. Characterization of soil microbial communi- ties under different potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles. Soil Biol. Biochem. 35, 1451–1466. https://doi.org/10.1016/S0038-0717(03)00240-2 (2003).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Shi, L. et al. Paenibacillus polymyxa NSY50 suppresses Fusarium wilt in cucumbers by regulating the rhizospheric microbial community. Sci. Rep. 7, 41234. https://doi.org/10.1038/srep41234 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Shen, Z. et al. Rhizosphere microbial community manipulated by 2 years of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression. Biol. Fertil. Soils 51, 1–10. https://doi.org/10.1007/s00374-015-1002-7 (2015).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Atandi, J. G. et al. Organic farming provides improved management of plant parasitic nematodes in maize and bean cropping systems. Agricult. Ecosyst. Environ. 247, 265–272. https://doi.org/10.1016/j.agee.2017.07.002 (2017).

    Article 

    Google Scholar 

  • 32.

    Wang, T., Qiao, W., Li, Y. & Ao, Y. Effects of crop rotation and microbial fertilizer on soil physical and chemical properties and biological activity of cucumber continuous cropping. Chin. J. Soil Sci. 42, 578–583. https://doi.org/10.19336/j.cnki.trtb.2011.03.013 (2011).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Daquan, S. J. et al. Effect of volatile organic compounds absorbed to fresh biochar on survival of Bacillus mucilaginosus and structure of soil microbial communities. J. Soils Sedim. https://doi.org/10.1007/s11368-014-0996-z (2015).

    Article 

    Google Scholar 

  • 34.

    Warnock, D. D. et al. Mycorrhizal responses to biochar in soil—concepts and mechanisms. Plant Soil 300, 9–20. https://doi.org/10.1007/s11104-007-9391-5 (2007).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Luo, Y., Tian, G., Zhang, D., Hao, R. & Wang, C. Effects of microbial agents on soil nutrients and nitrate nitrogen accumulation in terracotta greenhouse. Chin. Agric. Sci. Bull. 31, 224–228 (2015).

    Google Scholar 

  • 36.

    Yin, S. et al. Effects of complex ecological microbial agents on the number and enzyme activity of cucumber rhizosphere soil. Chin. J. Microbiol. 32, 23–27. https://doi.org/10.3969/j.issn.1005-7021.2012.01.005 (2012).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Dedysh, S. N., Ricke, P. & Liesack, W. NifH and NifD phylogenies: An evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria. Microbiology 150, 1301. https://doi.org/10.1016/j.jcp.2003.11.016 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 38.

    Michael, P. C., Madigan, T., Martinko, J. M. & Parker, J. Getting the bug for microorganisms. In Brock biology of microorganisms, 8th edn. 375–376 https://doi.org/10.1016/s0962-8924(97)83479-4 (Prentice Hall, 1997).

  • 39.

    Lv, X. et al. A meta-analysis of the bacterial and archaeal diversity observed in wetland soils. Sci. World J. https://doi.org/10.1155/2014/437684 (2014).

    Article 

    Google Scholar 

  • 40.

    Zhao, Y. et al. Variations in bacterial communities during foliar litter decomposition in the winter and growing seasons in an alpine forest of the eastern Tibetan Plateau. Can. J. Microbiol. 62, 1. https://doi.org/10.1139/cjm-2015-0448 (2015).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Jin, Xu., Wang, R., Deng, F., Cao, G. & Wang, G. Effects of biochar application on soil physical and chemical properties and enzyme activities of poplar plantation in Dongtai coastal area. J. Fujian Agric. For. Univ. 49, 348–353. https://doi.org/10.13323/j.cnki.j.fafu(nat.sci.).2020.03.010 (2020).

    Article 

    Google Scholar 

  • 42.

    Lehmann, J. et al. Biochar effects on soil biota—A review. Soil Biol. Biochem. 43, 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022 (2011).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Nugroho, S. G. et al. Three-year measurement of methane emission from an Indonesian paddy field. Plant Soil 181, 287–293. https://doi.org/10.1007/BF00012063 (1996).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Sauze, J. et al. The interaction of soil phototrophs and fungi with pH and their impact on soil CO2, CO18O and OCS exchange. Soil Biol. Biochem. 115, 371–382. https://doi.org/10.1016/j.soilbio.2017.09.009 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Long, J., Liao, H., Li, J. & Chen, C. Research on the relationship between soil and rocky desertification in typical karst mountain area based on redundancy analysis. Environ. Sci. 33, 2131–2138 (2012).

    Google Scholar 

  • 46.

    Zeng, J. et al. Primary succession of nitrogen cycling microbial communities along the deglaciated forelands of tianshan mountain, China. Front. Microbiol. 7, 1353. https://doi.org/10.3389/fmicb.2016.01353 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Sui, Y. et al. Study on the relationship between soil organic matter content and soil microbial biomass and soil enzyme activity. Chin. J. Soil Sci. 40, 1036–1039 (2009).

    CAS 

    Google Scholar 

  • 48.

    Jiao, X., Gao, C., Sui, Y., Zhang, X. & Ding, G. Sci. Agric. Sin. 44, 3759–3767. https://doi.org/10.3864/j.issn.0578-1752.2011.18.007 (2011).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Yao, L., Cheng, G., Wang, L., Chen, H. & Lou, L. Effects of biochar application on soil microorganisms. Environ. Chem. 34, 697–704. https://doi.org/10.7524/j.issn.0254-6108.2015.04.2014072802 (2015).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Rui, J. et al. Effects of biochar on soil properties, cadmium uptake and physiological characteristics of Chinese cabbage. J. Southern Agric. 47, 1480–1487. https://doi.org/10.3969/jissn.2095-1191.2016.09.1480 (2016).

    Article 

    Google Scholar 

  • 51.

    Zheng, H., Honghui, Wu., Wengi, B., Ye, J. & Zeng, Y. Soil Fertil. Sci. 2, 68–74. https://doi.org/10.11838/sfsc.1673-6257.18244 (2019).

    Article 

    Google Scholar 

  • 52.

    Shan, W., Li, J. & Liu, M. Inhibition of Verticillium wilt in cotton by filter paper method. Chin. Agric. Sci. Bull. 26, 285–289. https://doi.org/10.3969/j.issn.1000-632X.2010.08.007 (2010).

    Article 

    Google Scholar 

  • 53.

    Kızılkaya, R., Aşkın, T., Bayraklı, B. & Sağlam, M. Microbiological characteristics of soils contaminated with heavy metals. Eur. J. Soil Biol. 40, 95–102. https://doi.org/10.1016/j.ejsobi.2004.10.002 (2004).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Lee, S. H. et al. Degradation characteristics of waste lubricants under different nutrient conditions. J. Hazard. Mater. 143, 65–72. https://doi.org/10.1016/J.JHAZMAT.2006.08.059 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 55.

    Zhang, Y. M. Changes in enzyme activities of spruce (Picea balfouriana) forest soil as related to burning in the eastern Qinghai-Tibetan Plateau. Appl. Soil. Ecol. 30, 215–225. https://doi.org/10.1016/J.APSOIL.2005.01.005 (2005).

    Article 

    Google Scholar 

  • 56.

    Cole, J. R. et al. The ribosomal database project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, 141–145. https://doi.org/10.1093/nar/gkn879 (2009).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Wang, Y. et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl. Environ. Microbiol. 78, 8264. https://doi.org/10.1128/AEM.01821-12 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Jiang, X. T. et al. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microb. Ecol. 66, 96–104. https://doi.org/10.1007/s00248-013-0238-8 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 59.

    Jami, E. et al. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 7, 1069–1079. https://doi.org/10.1038/ismej.2013.2 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Nicola, S. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60. https://doi.org/10.1186/gb-2011-12-6-r60 (2011).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT.nano receives American Institute of Architects’s Top Ten Award for sustainable design

    Push to make supply chains more sustainable continues to gain momentum