in

Effects of large herbivore grazing on relics of the presumed mammoth steppe in the extreme climate of NE-Siberia

  • 1.

    Doughty, C. E., Wolf, A. & Field, C. B. Biophysical feedbacks between the Pleistocene megafauna extinction and climate: The first human-induced global warming?. Geophys. Res. Lett. 37, L15703 (2010).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Svenning, J.-C. et al. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research. Proc. Natl. Acad. Sci. 113, 898–906 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Owen-Smith, N. The pivotal role of megaherbivores. Paleobiology 13, 351–362 (1987).

    Article 

    Google Scholar 

  • 4.

    Vera, F. W. M. Grazing Ecology and Forest History (CABI Publishing, 2000). https://doi.org/10.1079/9780851994420.0000.

    Book 

    Google Scholar 

  • 5.

    Zimov, S. A. et al. Steppe-Tundra transition: A herbivore-driven biome shift at the end of the pleistocene. Am. Nat. 146, 765–794 (1995).

    Article 

    Google Scholar 

  • 6.

    Gill, J. L. Ecological impacts of the late quaternary megaherbivore extinctions. New Phytol. 201, 1163–1169 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 7.

    Bakker, E. S. et al. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl. Acad. Sci. 113, 847–855 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Martin, P. S. & Wright, H. E. Pleistocene Extinctions: The Search for a Cause, Vol 6*** (Yale University Press, 1967).

    Google Scholar 

  • 9.

    Haynes, G. The evidence for human agency in the late Pleistocene megafaunal extinctions. In Encyclopedia of the Anthropocene, voxl 1 (eds DellaSala, D. & Goldstein, M.) 219–226 (Elsevier Inc., 2018).

    Chapter 

    Google Scholar 

  • 10.

    Johnson, C. N. Ecological consequences of Late Quaternary extinctions of megafauna. Proc. R. Soc. B Biol. Sci. 276, 2509–2519 (2009).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Gradmann, R. Die Steppenheidentheorie. Geogr. Z. 39, 265–278 (1933).

    Google Scholar 

  • 12.

    Pausas, J. G. & Bond, W. J. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. 25, 250–263 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Zimov, S. A., Zimov, N. S., Tikhonov, A. N. & Chapin, F. S. Mammoth steppe: A high-productivity phenomenon. Quat. Sci. Rev. 20, 20 (2012).

    Google Scholar 

  • 14.

    Zimov, S. A., Zimov, N. S. & Chapin, F. S. The past and future of the mammoth steppe ecosystem. Springer Earth Syst. Sci. https://doi.org/10.1007/978-3-642-25038-5_10 (2012).

    Article 

    Google Scholar 

  • 15.

    Zimov, S. A. Pleistocene park: Return of the Mammoth’ s ecosystem. Science (80–) 08, 796–798 (2005).

    Article 
    CAS 

    Google Scholar 

  • 16.

    Yurtsev, B. A. The pleistocene ‘Tundra-steppe’ and the productivity paradox: The landscape approach. Quat. Sci. Rev. https://doi.org/10.1016/S0277-3791(00)00125-6 (2001).

    Article 

    Google Scholar 

  • 17.

    Blinnikov, M. S., Gaglioti, B. V., Walker, D. A., Wooller, M. J. & Zazula, G. D. Pleistocene graminoid-dominated ecosystems in the Arctic. Quat. Sci. Rev. 30, 2906–2929 (2011).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Kienast, F. Plant macrofossil records—Arctic Eurasia. In Encyclopedia of Quaternary Science (eds Elias, S. A. & Mock, C.) 733–745 (Elsevier, 2013).

    Chapter 

    Google Scholar 

  • 19.

    Guthrie, R. D. Mammals of the mammoth steppe as paleoenvironmental indicators. In Paleoecology of Beringia (eds Hopkins, D. M. et al.) 307–326 (Elsevier Inc, 1982).

    Chapter 

    Google Scholar 

  • 20.

    Kienast, F., Schirrmeister, L., Siegert, C. & Tarasov, P. Palaeobotanical evidence for warm summers in the East Siberian Arctic during the last cold stage. Quat. Res. 63, 283–300 (2005).

    Article 

    Google Scholar 

  • 21.

    Sher, A. V., Kuzmina, S. A., Kuznetsova, T. V. & Sulerzhitsky, L. D. New insights into the Weichselian environment and climate of the East Siberian Arctic, derived from fossil insects, plants, and mammals. Quat. Sci. Rev. 24, 533–569 (2005).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Guthrie, R. D. Origin and causes of the mammoth steppe: A story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. Quatern. Sci. Rev. 20, 20 (2001).

    Google Scholar 

  • 23.

    Rivals, F., Semprebon, G. & Lister, A. An examination of dietary diversity patterns in Pleistocene proboscideans (Mammuthus, Palaeoloxodon, and Mammut) from Europe and North America as revealed by dental microwear. Quat. Int. 255, 188–195 (2012).

    Article 

    Google Scholar 

  • 24.

    van Asperen, E. N. & Kahlke, R.-D. Dietary traits of the late Early Pleistocene Bison menneri (Bovidae, Mammalia) from its type site Untermassfeld (Central Germany) and the problem of Pleistocene ‘wood bison’. Quat. Sci. Rev. 177, 299–313 (2017).

    ADS 
    Article 

    Google Scholar 

  • 25.

    Saarinen, J. & Lister, A. M. Dental mesowear reflects local vegetation and niche separation in Pleistocene proboscideans from Britain. J. Quat. Sci. 31, 799–808 (2016).

    Article 

    Google Scholar 

  • 26.

    Sher, A. V. Fossil saiga in northeastern Siberia and Alaska. Int. Geol. Rev. 10, 1247–1260 (1968).

    Article 

    Google Scholar 

  • 27.

    Kahlke, R. D. & Lacombat, F. The earliest immigration of woolly rhinoceros (Coelodonta tologoijensis, Rhinocerotidae, Mammalia) into Europe and its adaptive evolution in Palaearctic cold stage mammal faunas. Quat. Sci. Rev. 27, 1951–1961 (2008).

    ADS 
    Article 

    Google Scholar 

  • 28.

    Kahlke, R. D. The origin of Eurasian Mammoth Faunas (Mammuthus-Coelodonta Faunal Complex). Quat. Sci. Rev. 96, 32–49 (2014).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Rivals, F. & Lister, A. M. Dietary flexibility and niche partitioning of large herbivores through the Pleistocene of Britain. Quat. Sci. Rev. 146, 116–133 (2016).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Kahlke, R. D. The maximum geographic extension of Late Pleistocene Mammuthus primigenius (Proboscidea, Mammalia) and its limiting factors. Quat. Int. 379, 147–154 (2015).

    Article 

    Google Scholar 

  • 31.

    Chapin, F. S., Shaver, R. R., Giblin, A. E., Nadelhoffer, K. G. & Laundre, J. A. Response of arctic tundra to experimental and observed changes in climat. Ecology 76, 694–711 (1995).

    Article 

    Google Scholar 

  • 32.

    Reinecke, J., Troeva, E. & Wesche, K. Extrazonal steppes and other temperate grasslands of northern Siberia—phytosociological classification and ecological characterization. Phytocoenologia 47, 167–196 (2017).

    Article 

    Google Scholar 

  • 33.

    Yurtsev, B. A. Relics of the xerophyte vegetation of Beringia in northeastern Asia. In Paleoecology of Beringia (eds Hopkins, D. M. et al.) 157–177 (Elsevier Inc, 1982).

    Chapter 

    Google Scholar 

  • 34.

    Ashastina, K. et al. Woodlands and steppes: Pleistocene vegetation in Yakutia’s most continental part recorded in the Batagay permafrost sequence. Quartern. Sci. Rev. 196, 38–61 (2018).

    ADS 
    Article 

    Google Scholar 

  • 35.

    Chytrý, M. et al. Refugial ecosystems in central Asia as indicators of biodiversity change during the Pleistocene–Holocene transition. Ecol. Indic. 77, 357–367 (2017).

    Article 

    Google Scholar 

  • 36.

    Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science (80–) 326, 1100–1103 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 37.

    Cingolani, A. M., Noy-Meir, I. & Díaz, S. Grazing effects on rangeland diversity: A synthesis of contemporary models. Ecol. Appl. 15, 757–773 (2005).

    Article 

    Google Scholar 

  • 38.

    Wehrden, H. V., Hanspach, J., Kaczensky, P., Fischer, J. & Wesche, K. Global assessment of the non-equilibrium concept in rangelands. Ecol. Appl. 22, 393–399 (2012).

    Article 

    Google Scholar 

  • 39.

    Wang, Y. et al. Combined effects of livestock grazing and abiotic environment on vegetation and soils of grasslands across Tibet. Appl. Veg. Sci. 20, 327–339 (2017).

    Article 

    Google Scholar 

  • 40.

    Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 41.

    Manseau, M., Huot, J. & Crête, M. Effects of summer grazing by caribou on composition and productivity of vegetation: Community and landscape level. J. Ecol. 84, 503–513 (1996).

    Article 

    Google Scholar 

  • 42.

    Suominen, O. & Olofsson, J. Impacts of semi-domesticated reindeer on structure of tundra and forest communities in fennoscandia: A review. Ann. Zool. Fennici 37, 233–249 (2000).

    Google Scholar 

  • 43.

    Virtanen, R. Effects of grazing on above-ground biomass on a mountain snowbed, NW Finland. Oikos 90, 295–300 (2000).

    Article 

    Google Scholar 

  • 44.

    Ravolainen, V. T. et al. Rapid, landscape scale responses in riparian tundra vegetation to exclusion of small and large mammalian herbivores. Basic Appl. Ecol. 12, 643–653 (2011).

    Article 

    Google Scholar 

  • 45.

    Wang, Y. & Wesche, K. Vegetation and soil responses to livestock grazing in Central Asian grasslands: A review of Chinese literature. Biodivers. Conserv. 25, 2401–2420 (2016).

    Article 

    Google Scholar 

  • 46.

    Díaz, S., Noy-meir, I. & Cabido, M. Can grazing of herbaceous plants be predicted response from simple vegetative traits?. J. Appl. Ecol. 38, 497–508 (2001).

    Article 

    Google Scholar 

  • 47.

    Díaz, S. et al. Plant trait responses to grazing—a global synthesis. Glob. Change Biol. 13, 313–341 (2007).

    ADS 
    Article 

    Google Scholar 

  • 48.

    Pakeman, R. J. & Marriott, C. A. A functional assessment of the response of grassland vegetation to reduced grazing and abandonment. J. Veg. Sci. 21, 683–694 (2010).

    Google Scholar 

  • 49.

    Troeva, E. I. & Cherosov, M. M. Transformation of Steppe communities of Yakutia due to climatic change and anthropogenic impact in Eurasian Steppes. Ecol. Probl. Livelih. Changing World https://doi.org/10.1007/978-94-007-3886-7_14 (2012).

    Article 

    Google Scholar 

  • 50.

    Gavrilyeva, L., Sofronov, R., Arzhakova, A., Barashkova, N. & Ivanov, I. Hayfields and pastures. In The Far North: Plant Biodiversity and Ecology of Yakutia (ed. Al, T.) 275–281 (Springer, 2010).

    Google Scholar 

  • 51.

    Gill, J. L. Learning from Africa’s herbivores. Science (80–) 350, 1036–1037 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 52.

    Reinecke, J. S. F. The Return of the Mammoth Steppe?—Rewilding in Yakutia and the Actual Impact of Large Herbivore Grazing on Vegetation (Technische Universität Dresden, 2019).

    Google Scholar 

  • 53.

    Malyschev, L. I. Flora of Siberia (Science Publishers, 2006).

    Google Scholar 

  • 54.

    Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).

    Article 

    Google Scholar 

  • 55.

    McCune, B. Improved estimates of incident radiation and heat load using non-parametric regression against topographic variables. J. Veg. Sci. 18, 751–754 (2007).

    Article 

    Google Scholar 

  • 56.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar 

  • 57.

    Ter Braak, C. J. F. & Šmilauer, P. Canoco reference manual and user’s guide: Software for ordination. 496 (2012).

  • 58.

    Ashastina, K. Palaeo-environments at the Batagay site in West Beringia During the Late Quaternary (Friedrich-Schiller-Universität Jena, 2018).

    Google Scholar 

  • 59.

    McCune, B. & Mefford, M. J. PC-ORD. (2011).

  • 60.

    Pakeman, R. J., Lennon, J. J. & Brooker, R. W. Trait assembly in plant assemblages and its modulation by productivity and disturbance. Oecologia 167, 209–218 (2011).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Troeva, E. I., Isaev, A. P., Cherosov, M. M. & Karpov, N. S. The Far North: Plant Diversity and Ecology of Yakutia (Springer, 2010).

    Book 

    Google Scholar 

  • 62.

    Elvebakk, A. ‘Arctic hotspot complexes’—proposed priority sites for studying and monitoring effects of climatic change on arctic biodiversity. Phytocoenologia 35, 1067–1079 (2005).

    Article 

    Google Scholar 

  • 63.

    Coughenour, M. B. Graminoid responses to grazing by large herbivores: Adaptations, exaptations, and interacting processes. Ann. Missouri Bot. Gard. 72, 852–863 (1985).

    Article 

    Google Scholar 

  • 64.

    Quiroga, R. E., Golluscio, R. A., Blanco, L. J. & Fernández, R. J. Aridity and grazing as convergent selective forces: An experiment with an Arid Chaco bunchgrass. Ecol. Appl. 20, 1876–1889 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Herms, D. A. & Matson, W. J. The dilemma of plants: To grow or defend. Q. Rev. Biol. 67, 293–335 (1992).

    Article 

    Google Scholar 

  • 66.

    Hobbie, S. E. Effect of plant species on nutrient cycling. Trends Ecol. Evol. 7, 336–339 (1992).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Coley, P. D., Bryant, J. P. & Chapin, F. S. Resource availability and plant antiherbivore defense. Science (80–) 230, 895–899 (1985).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 68.

    Wesche, K., Nadrowski, K. & Retzer, V. Habitat engineering under dry conditions: The impact of pikas (Ochotona pallasi) on vegetation and site conditions in southern Mongolian steppes. J. Veg. Sci. 18, 665 (2007).

    Article 

    Google Scholar 

  • 69.

    Newediuk, L. J., Waters, I. & Hare, J. F. Aspen parkland pasture altered by Richardson’s ground squirrel (Urocitellus richardsonii Sabine) activity: The good, the bad, and the not so ugly?. Can. Field-Nat. 129, 331–341 (2015).

    Article 

    Google Scholar 

  • 70.

    Wheeler, H. C. & Hik, D. S. Arctic ground squirrels Urocitellus parryii as drivers and indicators of change in northern ecosystems. Mamm. Rev. 43, 238–255 (2013).

    Article 

    Google Scholar 

  • 71.

    Steuter, A. A. & Hidinger, L. Comparative ecology of bison and cattle on mixed-grass prairie. Gt. Plains Res. 9, 329–342 (1999).

    Google Scholar 

  • 72.

    Ivanova, V. Tipchakovye stepi—odin iz etapov pastbischnoi digressii rastitelnosti v doline srednei Leny. In Rastitelnost Yakutii i Eyo Okhrana (ed. Andreyev, V.) 37–56 (1981).

  • 73.

    Ivanova, V. O vliyanii vypasa na stepnuyu rastitelnost v doline r. Leny. In Lyubite i okhranyaite prirodu Yakutii 86–93 (1967).

  • 74.

    Gavrilyeva, L. Pastbishnaya Digressiya i Ratsionalnoye Ispolzovaniye Rastitelnosti Alasov Leno-Amginskogo Mezhdurechya (University of Yakutsk, 1998).

    Google Scholar 

  • 75.

    Bazha, S. N., Gunin, P. D., Danzhalova, E. V., Drobyshev, Y. I. & Prishcepa, A. V. Pastoral degradataion of steppe ecosystems in Central Mongolia. In Eurasian Steppes. Ecological Problems and Livelihoods in a Changing World (eds Werger, M. J. A. & Staalduinen, M. A.) 289–319 (Springer, 2012).

    Chapter 

    Google Scholar 

  • 76.

    Crate, S. et al. Permafrost livelihoods: A transdisciplinary review and analysis of thermokarst-based systems of indigenous land use. Anthropocene 18, 89–104 (2017).

    Article 

    Google Scholar 

  • 77.

    Ellis, J. & Swift, D. Stability of African pastoral ecosystems: Alternate paradigms and implications for development. J. Range Manag. 41, 450–459 (1988).

    Article 

    Google Scholar 

  • 78.

    Nachinshonhor, U. G. Use of steppe vegetation by nomadic pastoralism in Mongolia. In Ecological Research Monographs (eds Yamamura, N. et al.) 145–156 (Springer, 2014).

    Google Scholar 

  • 79.

    Wang, Y. et al. Multiple indicators yield diverging results on grazing degradation and climate controls across Tibetan pastures. Ecol. Indic. 93, 1199–1208 (2018).

    Article 

    Google Scholar 

  • 80.

    Ahlborn, J. et al. Climate—grazing interactions in Mongolian rangelands: Effects of grazing change along a large-scale environmental gradient. J. Arid Environ. 173, 20 (2020).

    Article 

    Google Scholar 

  • 81.

    Vesk, P. A. & Westoby, M. Predicting plant species’ responses to grazing. J. Appl. Ecol. 28, 897–909 (2001).

    Article 

    Google Scholar 

  • 82.

    Shipley, L. Grazers and browsers: how digestive morphology affects diet selection. Grazing behavior of livestock and wildlife 70, 20–27 (1999).

  • 83.

    Larter, N. C. Diet and habitat selection of an erupting wood bison population. 1–118 (1988).

  • 84.

    Kuznetsova, T. V. Fossils of the mammoth fauna. Russian-German Cooperation SYSTEM LAPTEV SEA: The Expedition Lena—New Siberian Islands 2007 during the International Polar Year 2007/2008, 139–140 (2008).

  • 85.

    Kuznetsova, T. V., Sulerzhitsky, L. D. & Siegert, C. New data on the ‘Mammoth’ fauna of the Laptev Shelf Land (East Siberian Arctic). In The World of Elephants—International Congress 289–292 (2001).

  • 86.

    Haynes, G. Elephants (and extinct relatives) as earth-movers and ecosystem engineers. Geomorphology 157–158, 99–107 (2012).

    ADS 
    Article 

    Google Scholar 

  • 87.

    Gill, R. The influence of large herbivores on tree recruitment and forest dynamics. In Large Herbivore Ecology, Ecosystem Dynamics and Conservation (eds Danell, K. et al.) 170–202 (Cambridge University Press, 2006).

    Chapter 

    Google Scholar 

  • 88.

    Martin, P. J. Digestive and grazing strategies of animals in the arctic steppe. In Paleoecology of Beringia (eds Hopkins, D. M. et al.) 259–266 (Elsevier Inc, 1982).

    Chapter 

    Google Scholar 

  • 89.

    Huisman, J. & Olff, H. Competition and facilitation in multispecies plant-herbivore systems of productive environments. Ecol. Lett. 1, 25–29 (1998).

    Article 

    Google Scholar 

  • 90.

    Waldram, M. S., Bond, W. J. & Stock, W. D. Ecological engineering by a mega-grazer: White Rhino impacts on a south African savanna. Ecosystems 11, 101–112 (2008).

    Article 

    Google Scholar 

  • 91.

    Cornelissen, P. Large Herbivores as a Driving Force of Woodland-Grassland Cycles (Wageningen University, 2017).

    Google Scholar 

  • 92.

    Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: Linking theory to observation. Biotechnol. Agron. Soc. Environ. 14, 203–211 (2003).

    Google Scholar 

  • 93.

    Scheffer, M., Hirota, M., Holmgren, M., Van Nes, E. H. & Chapin, F. S. Thresholds for boreal biome transitions. Proc. Natl. Acad. Sci. 109, 21384–21389 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Observed increasing water constraint on vegetation growth over the last three decades

    Rapid evolution of bacterial mutualism in the plant rhizosphere