in

Effects of small ridge and furrow mulching degradable film on dry direct seeded rice

  • 1.

    Huang, H. Study on mechanized production engineering mode for paddy rice in double-cropping areas in south china. Published doctorial dissertation, China Agricultural University, Beijing. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFD1214&filename=1014223520.nh (2014).

  • 2.

    Gao, Y. M., Yan, T. & Liu, W. J. Research and progress of direct rice seeding mechanization at home and abroad. Agric. Sci. Technol. Equip. 1, 28–29. https://doi.org/10.16313/j.cnki.nykjyzb.2013.01.020 (2013).

    Article  Google Scholar 

  • 3.

    Fawzy, S., Osman, A. I., Doran, J. & Rooney, D. W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 6, 2069–2094. https://doi.org/10.1007/s10311-020-01059-w (2020).

    CAS  Article  Google Scholar 

  • 4.

    Hussain, S. et al. Rice production under climate change: Adaptations and mitigating strategies. In Environment, Climate, Plant and Vegetation Growth (eds Fahad, S. et al.) 659–686 (Springer, Berlin, 2020).

    Google Scholar 

  • 5.

    Vicente-Serrano, S. M., Quiring, S. M., Pena-Gallardo, M., Yuan, S. S. & Dominguez-Castro, F. A review of environmental droughts: Increased risk under global warming?. Earth Sci. Rev. 201, 102953. https://doi.org/10.1016/j.earscirev.2019.102953 (2020).

    Article  Google Scholar 

  • 6.

    Ault, T. R. On the essentials of drought in a changing climate. Science 6488, 256–260. https://doi.org/10.1126/science.aaz5492 (2020).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Zhang, L. X. & Zhou, T. J. Drought over east Asia: A review. J. Clim. 8, 3375–3399. https://doi.org/10.1175/JCLI-D-14-00259.1 (2015).

    ADS  Article  Google Scholar 

  • 8.

    Zhang, X. et al. Urban drought challenge to 2030 sustainable development goals. Sci. Total Environ. 693, 133536. https://doi.org/10.1016/j.scitotenv.2019.07.342 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 9.

    Chakraborty, D. et al. A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production. Sci. Rep. 7, 9342. https://doi.org/10.1038/s41598-017-09742-9 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 10.

    Peng, S. B., Tang, Q. Y. & Zou, Y. B. Current status and challenges of rice production in China. Plant Prod. Sci. 12, 3–8. https://doi.org/10.1626/pps.12.3 (2009).

    Article  Google Scholar 

  • 11.

    Sun, L. M. et al. Implications of low sowing rate for hybrid rice varieties under dry direct-seeded rice system in central China. Field Crops Res. 175, 87–95. https://doi.org/10.1016/j.fcr.2015.02.009 (2015).

    Article  Google Scholar 

  • 12.

    Farooq, M. et al. Rice direct seeding: Experiences, challenges and opportunities. Soil Tillage Res. 111, 87–98. https://doi.org/10.1016/j.still.2010.10.008 (2011).

    Article  Google Scholar 

  • 13.

    Sandhu, N. et al. Deciphering the genetic basis of root morphology, nutrient uptake, yield, and yield-related traits in rice under dry direct-seeded cultivation systems. Sci. Rep. 9, 9334. https://doi.org/10.1038/s41598-019-45770-3 (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    Liu, H. Y. et al. Dry direct-seeded rice as an alternative to transplanted-flooded rice in Central China. Agron. Sustain. Dev. 35, 285–294. https://doi.org/10.1007/s13593-014-0239-0 (2015).

    Article  Google Scholar 

  • 15.

    Muhammad, S. et al. The effect of different weed management strategies on the growth and yield of direct-seeded dry rice (Oryza sativa). Planta Daninha. 34, 57–64. https://doi.org/10.1590/S0100-83582016340100006 (2016).

    Article  Google Scholar 

  • 16.

    Kakumanu, K. R., Kotapati, G. R., Nagothu, U. S., Kuppanan, P. & Kallam, S. R. Adaptation to climate change and variability: A case of direct seeded rice in Andhra Pradesh, India. J. Water Clim. Change. 10, 419–430. https://doi.org/10.2166/wcc.2018.141 (2019).

    Article  Google Scholar 

  • 17.

    Yamane, K. et al. Seed vigour contributes to yield improvement in dry direct-seeded rainfed lowland rice. Ann Appl. Biol. 172, 100–110. https://doi.org/10.1111/aab.12405 (2018).

    CAS  Article  Google Scholar 

  • 18.

    Nakano, H., Hattori, I. & Morita, S. Dry matter yield response to seeding rate and row spacing in direct-seeded and double-harvested forage rice. Jpn. Agric. Res. Q. 53, 255–264. https://doi.org/10.6090/jarq.53.255 (2019).

    CAS  Article  Google Scholar 

  • 19.

    Sun, C. L. et al. Implications of low sowing rate for hybrid rice varieties under drydirect-seeded rice system in Central China. Field Crops Res. 175, 87–95. https://doi.org/10.1016/j.fcr.2015.02.009 (2015).

    Article  Google Scholar 

  • 20.

    Jabran, K. et al. Mulching improves water productivity, yield and quality of fine rice under water-saving rice production systems. J. Agron. Crop Sci. 201, 389–400. https://doi.org/10.1111/jac.12099 (2015).

    Article  Google Scholar 

  • 21.

    Fawibe, O. O., Hiramatsu, M., Taguchi, Y., Wang, J. & Isoda, A. Grain yield, water-use efficiency, and physiological characteristics of rice cultivars under drip irrigation with plastic-film-mulch. J. Crop Improv. 34, 414–436. https://doi.org/10.1080/15427528.2020.1725701 (2020).

    Article  Google Scholar 

  • 22.

    He, H. B. et al. Rice performance and water use efficiency under plastic mulching with drip irrigation. PLoS ONE 8, e83103. https://doi.org/10.1371/journal.pone.0083103 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Farooqi, Z. U. R., Sabir, M., Zeeshan, N., Naveed, K. & Hussain, M. M. Enhancing carbon sequestration using organic amendments and agricultural practices. In Carbon Capture, Utilization and Sequestration (ed. Agarwal, R. K.) 17–35 (IntechOpen, London, 2018).

    Google Scholar 

  • 24.

    Fuss, S. et al. Negative emissions-part 2: Costs, potentials and side effects. Environ. Res. Lett. 6, 063002. https://doi.org/10.1088/1748-9326/aabf9f (2018).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Li, Y. S. et al. Influence of continuous plastic film mulching on yield, water use efficiency and soil properties of rice fields under non-flooding condition. Soil Tillage Res. 93, 370–378. https://doi.org/10.1016/j.still.2006.05.010 (2007).

    Article  Google Scholar 

  • 26.

    Huang, Y., Liu, Q., Jia, W. Q., Yan, C. R. & Wang, J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ. Pollut. 260, 114096. https://doi.org/10.1016/j.envpol.2020.114096 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 27.

    Yu, Q. et al. Distribution, abundance and risks of microplastics in the environment. Chemosphere 249, 126059. https://doi.org/10.1016/j.chemosphere.2020.126059 (2020).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 28.

    Yan, X. Y. et al. Downward transport of naturally-aged light microplastics in natural loamy sand and the implication to the dissemination of antibiotic resistance genes. Environ. Pollut. 262, 114270. https://doi.org/10.1016/j.envpol.2020.114270 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 29.

    Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 7, e1700782. https://doi.org/10.1126/sciadv.1700782 (2017).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Osman, A. I. et al. Pyrolysis kinetic modelling of abundant plastic waste (PET) and in-situ emission monitoring. Environ. Sci. Eur. 1, 112. https://doi.org/10.1186/s12302-020-00390-x (2020).

    CAS  Article  Google Scholar 

  • 31.

    Kumar, U. S. U. et al. Neem leaves extract based seaweed bio-degradable composite films with excellent antimicrobial activity for sustainable packaging material. BioResources 1, 700–713. https://doi.org/10.15376/biores.14.1.700-713 (2019).

    CAS  Article  Google Scholar 

  • 32.

    Qasim, U. et al. Renewable cellulosic nanocomposites for food packaging to avoid fossil fuel plastic pollution: A review. Environ. Chem. Lett. https://doi.org/10.1007/s10311-020-01090-x (2020).

    Article  Google Scholar 

  • 33.

    Wang, Y. J., He, K., Zhang, J. B. & Chang, H. Y. Environmental knowledge, risk attitude, and households’ willingness to accept compensation for the application of degradable agricultural mulch film: Evidence from rural China. Sci. Total Environ. 744, 140616. https://doi.org/10.1016/j.scitotenv.2020.140616 (2020).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 34.

    Cirujeda, A. et al. Biodegradable mulch instead of polyethylene for weed control of processing tomato production. Agron. Sustain. Dev. 32, 889–897. https://doi.org/10.1007/s13593-012-0084-y (2012).

    CAS  Article  Google Scholar 

  • 35.

    Yin, M. H., Li, Y. N., Fang, H. & Chen, P. P. Biodegradable mulching film with an optimum degradation rate improves soil environment and enhances maize growth. Agric. Water Manag. 216, 127–137. https://doi.org/10.1016/j.agwat.2019.02.004 (2019).

    Article  Google Scholar 

  • 36.

    Daryanto, S., Wang, L. X. & Jacinthe, P. A. Can ridge-furrow plastic mulching replace irrigation in dryland wheat and maize cropping systems?. Agric. Water Manag. 190, 1–5. https://doi.org/10.1016/j.agwat.2017.05.005 (2017).

    Article  Google Scholar 

  • 37.

    Qin, S. H., Zhang, J. L., Dai, H. L., Wang, D. & Li, D. M. Effect of ridge–furrow and plastic-mulching planting patterns on yield formation and water movement of potato in a semi-arid area. Agric. Water Manag. 131, 87–94. https://doi.org/10.1016/j.agwat.2013.09.015 (2014).

    Article  Google Scholar 

  • 38.

    Fan, Y. L. et al. Effects of ridge and furrow film mulching on soil environment and yield under potato continuous cropping system. Plant Soil Environ. 65, 523–529. https://doi.org/10.17221/481/2019-PSE (2019).

    Article  Google Scholar 

  • 39.

    Fan, T. L. et al. Film mulched furrow-ridge water harvesting planting improves agronomic productivity and water use efficiency in rainfed areas. Agric. Water Manag. 217, 1–10. https://doi.org/10.1016/j.agwat.2019.02.031 (2019).

    Article  Google Scholar 

  • 40.

    Diaz-Perez, J. C. Root zone temperature, plant growth and yield of broccoli [Brassica oleracea (plenck) var. italica] as affected by plastic film mulches. Sci. Hortic. 123, 156–163. https://doi.org/10.1016/j.scienta.2009.08.014 (2009).

    Article  Google Scholar 

  • 41.

    Gholamhoseini, M., Dolatabadian, A. & Habibzadeh, F. Ridge-furrow planting system and wheat straw mulching effects on dryland sunflower yield, soil temperature, and moisture. Agron. J. 111, 3383–3392. https://doi.org/10.2134/agronj2019.02.0097 (2019).

    CAS  Article  Google Scholar 

  • 42.

    Mo, F. et al. Alternating small and large ridges with full film mulching increase linseed (Linum usitatissimum L.) productivity and economic benefit in a rainfed semiarid environment. Field Crops Res. 219, 120–130. https://doi.org/10.1016/j.fcr.2018.01.036 (2018).

    Article  Google Scholar 

  • 43.

    Gu, X. B., Li, Y. N., Du, Y. D. & Yin, M. H. Ridge-furrow rainwater harvesting with supplemental irrigation to improve seed yield and water use efficiency of winter oilseed rape (Brassica napus L.). J. Integr. Agric. 16, 1162–1172. https://doi.org/10.1016/S2095-3119(16)61447-8 (2017).

    Article  Google Scholar 

  • 44.

    Mo, F., Wang, J. Y., Xiong, Y. C., Nguluu, S. N. & Li, F. M. Ridge-furrow mulching system in semiarid Kenya: A promising solution to improve soil water availability and maize productivity. Eur. J. Agron. 80, 124–136. https://doi.org/10.1016/j.eja.2016.07.005 (2016).

    Article  Google Scholar 

  • 45.

    Zhang, X. D. et al. Ridge-furrow mulching system regulates diurnal temperature amplitude and wetting-drying alternation behavior in soil to promote maize growth and water use in a semiarid region. Field Crops Res. 233, 121–130. https://doi.org/10.1016/j.fcr.2019.01.009 (2019).

    Article  Google Scholar 

  • 46.

    Li, F. M., Wang, J., Xu, J. Z. & Xu, H. L. Productivity and soil response to plastic film mulching durations for spring wheat on entisols in the semiarid loess plateau of China. Soil Tillage Res. 78, 9–20. https://doi.org/10.1016/j.still.2003.12.009 (2004).

    CAS  Article  Google Scholar 

  • 47.

    Li, C. J. et al. Towards the highly effective use of precipitation by ridge-furrow with plastic film mulching instead of relying on irrigation resources in a dry semi-humid area. Field Crops Res. 188, 62–73. https://doi.org/10.1016/j.fcr.2016.01.013 (2016).

    ADS  Article  Google Scholar 

  • 48.

    Li, Y. Z. et al. The effect of tillage on nitrogen use efficiency in maize (Zea mays L.) in a ridge–furrow plastic film mulch system. Soil Tillage Res. 195, 104409. https://doi.org/10.1016/j.still.2019.104409 (2019).

    Article  Google Scholar 

  • 49.

    Zheng, J., Fan, J. L., Zou, Y. F., Chau, H. W. & Zhang, F. C. Ridge-furrow plastic mulching with a suitable planting density enhances rainwater productivity, grain yield and economic benefit of rainfed maize. J. Arid Land. 12, 181–198. https://doi.org/10.1007/s40333-020-0001-1 (2020).

    CAS  Article  Google Scholar 

  • 50.

    Zhao, H. et al. Ridge-furrow with full plastic film mulching improves water use efficiency and tuber yields of potato in a semiarid rainfed ecosystem. Field Crops Res. 161, 137–148. https://doi.org/10.1016/j.fcr.2014.02.013 (2014).

    ADS  Article  Google Scholar 

  • 51.

    Ren, X., Chen, X. & Jia, Z. Effect of rainfall collecting with ridge and furrow on soil moisture and root growth of corn in semiarid northwest China. J. Agron. Crop Sci. 196, 109–122. https://doi.org/10.1111/j.1439-037X.2009.00401.x (2010).

    Article  Google Scholar 

  • 52.

    Dong, W. L. et al. Ridge and furrow systems with film cover increase maize yields and mitigate climate risks of cold and drought stress in continental climates. Field Crops Res. 207, 71–78. https://doi.org/10.1016/j.fcr.2017.03.003 (2017).

    Article  Google Scholar 

  • 53.

    Tian, Y., Su, D. R., Li, F. M. & Li, X. L. Effect of rainwater harvesting with ridge and furrow on yield of potato in semiarid areas. Field Crops Res. 84, 385–391. https://doi.org/10.1016/S0378-4290(03)00118-7 (2003).

    Article  Google Scholar 

  • 54.

    Zhang, X. D. et al. Ridge-furrow mulching system drives the efficient utilization of key production resources and the improvement of maize productivity in the loess plateau of China. Soil Tillage Res. 190, 10–21. https://doi.org/10.1016/j.still.2019.02.015 (2019).

    Article  Google Scholar 

  • 55.

    Li, R., Hou, X. Q., Jia, Z. K. & Han, Q. F. Soil environment and maize productivity in semi-humid regions prone to drought of Weibei Highland are improved by ridge-and-furrow tillage with mulching. Soil Tillage Res. 196, 104476. https://doi.org/10.1016/j.still.2019.104476 (2020).

    Article  Google Scholar 

  • 56.

    Gu, X. B., Li, Y. N. & Du, Y. D. Film-mulched continuous ridge-furrow planting improves soil temperature, nutrient content and enzymatic activity in a winter oilseed rape field, northwest China. J. Arid Land. 10, 362–374. https://doi.org/10.1007/s40333-018-0055-5 (2018).

    Article  Google Scholar 

  • 57.

    Li, M. Study on dynamic of maize (Zea mays L.) yield, soil water and soil carbon under the dry-farming plastic mulching system of ridge and furrow. Published doctorial dissertation, LanZhou University, Lanzhou. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFDTEMP&filename=1020655864.nh (2020).

  • 58.

    Liu, X. E. et al. Film-mulched ridge-furrow management increases maize productivity and sustains soil organic carbon in a dryland cropping system. Soil Sci. Soc. Am. J. 4, 1434–1441. https://doi.org/10.2136/sssaj2014.04.0121 (2014).

    CAS  Article  Google Scholar 

  • 59.

    Wang, Y. P. et al. Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid areas of China. Agric. For. Meteorol. 228, 42–51. https://doi.org/10.1016/j.agrformet.2016.06.016 (2016).

    ADS  Article  Google Scholar 

  • 60.

    Li, S. P., Cai, Z. C., Yang, H. & Wang, J. K. Effects of long-term fertilization and plastic film covering on some soil fertility and microbial properties. Acta Ecol. Sin. 5, 2489–2498 (2009).

    Google Scholar 


  • Source: Ecology - nature.com

    Scientists discover slimy microbes that may help keep coral reefs healthy

    Multiple life-stage inbreeding depression impacts demography and extinction risk in an extinct-in-the-wild species