Murphy, P. G. & Lugo, A. E. Ecology of tropical dry forest. Ann. Rev. Ecol. Syst. 17, 67–88. https://doi.org/10.1146/annurev.es.17.110186.000435 (1986).
Google Scholar
Hasselquist, N. J., Allen, M. F. & Santiago, L. S. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence. Oecologia 164, 881–890. https://doi.org/10.1007/s00442-010-1725-y (2010).
Google Scholar
Maass, M. et al. Long-term (33 years) rainfall and runoff dynamics in a tropical dry forest ecosystem in western Mexico: Management implications under extreme hydrometeorological events. For. Ecol. Manage. 426, 7–17. https://doi.org/10.1016/j.foreco.2017.09.040 (2018).
Google Scholar
NOAA. National Weather Service. Climate Prediction Center. Cold and warm episodes by season. http://www.cpc.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml. (Accessed 19 October 2019).
Detto, M., Wright, J., Calderón, O. & Muller-Landau, H. C. Resource acquisition and reproductive strategies of tropical forest in response to the El Niño-Southern Oscillation. Nat. Commun. 9, 9–13. https://doi.org/10.1038/s41467-018-03306-9 (2018).
Google Scholar
Bretfeld, M., Ewers, B. E. & Hal, J. S. Plant water use responses along secondary forest succession during the 2015–2016 El Niño drought in Panama. New Phytol. 219, 885–899. https://doi.org/10.1111/nph.15071 (2018).
Google Scholar
Meakem, V. et al. Role of tree size in moist tropical forest carbon cycling and water deficit responses. New Phytol. 219, 947–958. https://doi.org/10.1111/nph.14633 (2018).
Google Scholar
Salmon, Y. et al. Drought impacts on tree phloem: From cell-level responses to ecological significance. Tree Physiol. 39, 173–191. https://doi.org/10.1093/treephys/tpy153 (2019).
Google Scholar
Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266. https://doi.org/10.1126/science.aat7631 (2020).
Google Scholar
Powers, J. S. et al. A catastrophic tropical drought kills hydraulically vulnerable tree species. Glob. Change Biol. 26, 3122–3133. https://doi.org/10.1111/gcb.15037 (2020).
Google Scholar
Wigneron, J. P. et al. Tropical forests did not recover from the strong 2015–2016 El Niño event. Sci. Adv. 6, eaay4603. https://doi.org/10.1126/sciadv.aay4603 (2020).
Google Scholar
Martinez-Vilalta, J. & Lloret, F. Drought-induced vegetation shifts in terrestrial ecosystems: The key role of regeneration dynamics. Glob. Planet. Change 144, 94–108. https://doi.org/10.1016/j.gloplacha.2016.07.009 (2016).
Google Scholar
Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684. https://doi.org/10.1016/j.foreco.2009.09.001 (2010).
Google Scholar
Anderegg, W. R. L. et al. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. PNAS 113, 5024–5029. https://doi.org/10.1073/pnas.1525678113 (2016).
Google Scholar
Greenwood, S. et al. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol. Lett. 20, 539–553. https://doi.org/10.1111/ele.12748 (2017).
Google Scholar
Sperry, J. S., Meinzer, F. C. & McCulloh, K. A. Safety and efficiency conflicts in hydraulic architecture: Scaling from tissues to trees. Plant Cell Environ. 31, 632–645. https://doi.org/10.1111/j.1365-3040.2007.01765.x (2008).
Google Scholar
Borchert, R. & Pockman, W. T. Water storage capacitance and xylem tension in isolated branches of temperate and tropical trees. Tree Physiol. 25, 457–466. https://doi.org/10.1093/treephys/25.4.457 (2005).
Google Scholar
Valdez-Hernández, M., Andrade, J. L., Jackson, P. C. & Rebolledo-Vieyra, M. Phenology of five tree species of a tropical dry forest in Yucatán, Mexico: Effects of environmental and physiological factors. Plant Soil 329, 155–171. https://doi.org/10.1007/s11104-009-0142-7 (2010).
Google Scholar
Santiago, L. S. et al. Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytol. 218, 1015–1024. https://doi.org/10.1111/nph.15058 (2018).
Google Scholar
Bussotti, F., Pollastrini, M., Holland, V. & Bruggemann, W. Functional traits and adaptive capacity of European forests to climate change. Environ. Experim. Bot. 111, 91–113. https://doi.org/10.1016/j.envexpbot.2014.11.006 (2015).
Google Scholar
Reich, P. B. & Borchert, R. Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. J. Ecol. 72(1), 61–74. https://doi.org/10.2307/2260006 (1984).
Google Scholar
Holbrook, N. M., Whitbeck, J. L. & Mooney, H. A. Drought responses of neotropical dry forest trees. In Seasonally Dry Tropical Forests (eds Bullock, S. H. et al.) (Cambridge University Press, 1995). https://doi.org/10.1017/CBO9780511753398.010.
Wolfe, B. T. & Kursar, T. A. Diverse patterns of stored water use among saplings in seasonally dry tropical forests. Oecologia 179, 925–936. https://doi.org/10.1007/s00442-015-3329-z (2015).
Google Scholar
Borchert, R., Rivera, G. & Hagnauer, W. Modification of vegetative phenology in a tropical semi-deciduous forest by abnormal drought and rain. Biotropica 34, 27–39. https://doi.org/10.1111/j.1744-7429.2002.tb00239.x (2002).
Google Scholar
Markesteijn, L., Poorter, L., Paz, H., Sack, L. & Bongers, F. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environ. 34, 137–148. https://doi.org/10.1111/j.1365-3040.2010.02231.x (2011).
Google Scholar
Aragón-Moreno, A. A., Islebe, G. A., Torrescano-Valle, N. & Arellano-Verdejo, J. Middle and late Holocene mangrove dynamics of the Yucatan Peninsula, Mexico. J. S. Am. Earth Sci. 85, 307–311. https://doi.org/10.1016/j.jsames.2018.05.015 (2018).
Google Scholar
De la Barreda, B., Metcalfe, E. S. & Boyd, D. S. Precipitation regionalization, anomalies and drought occurrence in the Yucatan peninsula, Mexico. Int. J. Climatol. 40(10), 1–15. https://doi.org/10.1002/joc.6474 (2020).
Google Scholar
IPCC. Summary for Policymakers. In: Global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (V. Masson-Delmotte, P., Zhai, H. O., Pörtner, D., Roberts, J., Skea, P.R., Shukla, A., Pirani, W., Moufouma-Okia, C., Péan, R., Pidcock, S., Connors, J.B.R., Matthews, Y., Chen, X., Zhou, M. I., Gomis, E., Lonnoy, T., Maycock, M., Tignor, T., Waterfield, eds.). World Meteorological Organization, Geneva, Switzerland. https://www.ipcc.ch/sr15/ (Accessed 15 November 2019).
Eller, C. B., Rowland, L. & Oliveira, R. S. Modelling tropical forest responses to drought and El Niño with a stomatal optimization model based on xylem hydraulics. Phil. Trans. R. Soc. B 373, 1–12. https://doi.org/10.1098/rstb.2017.0315 (2018).
Google Scholar
Feng, X., Porporato, A. & Rodriguez-Iturbe, I. Changes in rainfall seasonality in the tropics. Nat. Clim. Chang. 3(9), 811–815. https://doi.org/10.1038/nclimate1907 (2013).
Google Scholar
Goldstein, G. et al. Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant Cell Environ. 21, 397–406. https://doi.org/10.1046/j.1365-3040.1998.00273.x (1998).
Google Scholar
Landsberg, J. & Waring, R. Water relations in tree physiology: where to from here?. Tree Physiol. 37, 18–32. https://doi.org/10.1093/treephys/tpw102 (2016).
Google Scholar
Kim, J. S. & Kug, J.-S. Increased atmospheric CO2 growth rate during El Niño driven by reduced terrestrial CO2 capture in the CMIP5 ESMs. J. Clim. 29, 8783–8805. https://doi.org/10.1175/JCLI-D-14-00672.1 (2016).
Google Scholar
Kim, J. S., Kug, J.-S. & Jeong, S. Intensification of terrestrial carbon cycle related to El Niño-Southern Oscillation under greenhouse warming. Nat. Commun. 8, 1674. https://doi.org/10.1038/s41467-017-01831-7 (2017).
Google Scholar
Wang, Q., Cai, W., Zeng, L. & Wang, D. Nonlinear meridional moisture advection and the ENSO-southern China rainfall teleconnection. Geophys. Res. Lett. 45(9), 4353–4360. https://doi.org/10.1029/2018GL077446 (2018).
Google Scholar
Wang, Q., Wang, Y., Sui, J., Zhou, W. & Li, D. Effects of weak and strong winter currents on the thermal state of the South China Sea. J. Clim. 34(1), 313–325. https://doi.org/10.1175/JCLI-D-19-0790.1 (2021).
Google Scholar
Xie, S.-P. et al. Eastern Pacific ITCZ dipole and ENSO diversity. J. Clim. 31, 4449–4462. https://doi.org/10.1175/JCLI-D-17-0905.1 (2018).
Google Scholar
Peng, Q., Xie, S.-P., Wang, D., Zheng, X.-T. & Zhang, H. Coupled ocean–atmosphere dynamics of the 2017 extreme coastal El Niño. Nat. Commun. 10, 298. https://doi.org/10.1038/s41467-018-08258-8 (2019).
Google Scholar
Peng, Q. et al. Eastern Pacific winds in the evolution of El Niño: implications for ENSO diversity. J. Clim. 33, 3197–3212. https://doi.org/10.1175/JCLI-D-19-0435.1 (2020).
Google Scholar
Barkhodarian, A., Saatchi, S. S., Behrangi, A., Loikith, P. C. & Mechoso, C. R. A recent systematic increase in vapor pressure deficit over tropical South America. Sci. Rep. 9, 15331. https://doi.org/10.1038/s41598-019-51857-8 (2019).
Google Scholar
Meinzer, F. C., James, S. A., Goldstein, G. & Woodruff, D. Whole-tree water transport scales sapwood capacitance in tropical forest canopy trees. Plant Cell Environ. 26, 1147–1155. https://doi.org/10.1046/j.1365-3040.2003.01039.x (2003).
Google Scholar
Luo, Z. et al. Responses of plant water use to a severe summer drought for two subtropical tree species in the central southern China. J. Hydrol. Reg. Stud. 8, 1–9. https://doi.org/10.1016/j.ejrh.2016.08.001 (2016).
Google Scholar
Vinya, R., Malhi, Y., Brown, N. & Fisher, J. Functional coordination between branch hydraulic properties and leaf functional traits in miombo woodlands: Implications for water stress management and species habitat preference. Acta Physiol. Plant 34, 1701–1710. https://doi.org/10.1007/s11738-012-0965-3 (2012).
Google Scholar
Choat, B., Ball, M. C., Luly, J. G. & Holtum, J. A. M. Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north-eastern Autralia. Trees 19, 305–311. https://doi.org/10.1007/s00468-004-0392-1 (2005).
Google Scholar
Romero, E., González, E. J., Meave, J. A. & Terrazas, T. Wood anatomy of dominant species with contrasting ecological performance in tropical dry forest succession. Plant Biosyst. 154, 524–534. https://doi.org/10.1080/11263504.2019.1651775 (2019).
Google Scholar
Pineda-García, F., Paz, H. & Meinzer, F. C. Drought resistance in early and late secondary successional species from a tropical dry forest: The interplay between xylem resistance to embolism, sapwood water storage and leaf shedding. Plant Cell Environ. 36, 405–418. https://doi.org/10.1111/j.1365-3040.2012.02582.x (2013).
Google Scholar
Choat, B., Sack, L. & Holbrook, M. Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation. New Phytol. 175, 686–698. https://doi.org/10.1111/j.1469-8137.2007.02137.x (2007).
Google Scholar
Fallas-Cedeño, L., Holbrook, N. M., Rocha, O. J., Vásquez, N. & Gutiérrez-Soto, M. Phenology, lignotubers, and water relations of Cochlospermum vitifolium, a pioneer tropical dry forest tree in Costa Rica. Biotropica 42, 104–111. https://doi.org/10.1111/j.1744-7429.2009.00539.x (2010).
Google Scholar
Quintanar-Isaías, A., Velasquez-Nuñez, M., Solares-Arenas, F., Pérez-Olvera, C. P. & Torre-Blanco, A. Secondary stem anatomy and uses or four drought-deciduous species of a tropical dry forest in Mexico. Rev. Biol. Trop. 53, 29–48. https://doi.org/10.15517/RBT.V53I1-2.14297 (2005).
Google Scholar
Veneklaas, E. J., Santos-Silva, M. P. & den Ouden, F. Determinants of growth rate in Ficus benjamina L. compared to related faster-growing woody and herbaceous species. Sci. Hortic. 93, 75–84. https://doi.org/10.1016/S0304-4238(01)00315-6 (2002).
Google Scholar
Mediavilla, S., Escudero, A. & Heilmeier, H. Internal leaf anatomy and photosynthetic resource-use efficiency: Interspecific and intraspecific comparisons. Tree Physiol. 21, 251–259. https://doi.org/10.1093/treephys/21.4.251 (2001).
Google Scholar
Peguero-Pina, J. J., Sancho-Knapik, D. & Gil-Pelegrin, E. Ancientcell structural traits and photosynthesis in today’s environment. J. Exp. Bot. 68, 1389–1392. https://doi.org/10.1093/jxb/erx081 (2017).
Google Scholar
Kitajima, K. & Poorter, L. Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytol. 186, 708–721. https://doi.org/10.1111/j.1469-8137.2010.03212.x (2010).
Google Scholar
Schwedenman, L., Pendall, E., Sanchez-Bragado, R., Kunert, N. & Holscher, D. Tree water uptake in a tropical plantation varying in tree diversity: Interspecific differences, seasonal shifts and complementary. Ecohydrology 8, 1–12. https://doi.org/10.1002/eco.1479 (2015).
Google Scholar
Reyes-García, C., Andrade, J. L., Simá, J. L., Us-Santamaría, R. & Jackson, P. C. Sapwood to heartwood ratio affects whole-tree water use in dry forest legume and non-legume trees. Trees 26, 1317–1330. https://doi.org/10.1007/s00468-012-0708-5 (2012).
Google Scholar
Santiago, L. et al. Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia 140, 543–550. https://doi.org/10.1007/s00442-004-1624-1 (2004).
Google Scholar
Li, X. et al. Tree hydraulic traits are coordinated and strongly linked to climate-of-origin across a rainfall gradient. Plant Cell Environ. 41, 646–660. https://doi.org/10.1111/pce.13129 (2018).
Google Scholar
Querejeta, J. I., Estrada-Medina, H., Allen, M. F., Jiménez-Osorio, J. J. & Ruenes, R. Utilization of bedrock water by Brosimum alicastrum trees growing on shallow soil atop limestone in a dry tropical climate. Plant Soil 287, 187–197. https://doi.org/10.1007/s11104-006-9065-8 (2006).
Google Scholar
Scholz, F. G., Phillips, N. G., Bucci, S. J., Meinzer, F. C. & Goldstein, G. Hydraulic capacitance: Biophysics and functional significance of internal water sources in relation to tree size. In Size- and Age-Related Changes in Tree Structure and Function (eds Meinzer, F. C. et al.) 341–362 (Springer, 2011). https://doi.org/10.1007/978-94-007-1242-3_13.
Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 139, 1–5. https://doi.org/10.1038/nplants.2015.139 (2015).
Google Scholar
Sobrado, M. A. Embolism vulnerability in drought-deciduous and evergreen species of a tropical dry forest. Acta Oecol. 18, 383–391. https://doi.org/10.1016/S1146-609X(97)80030-6 (1997).
Google Scholar
Brodribb, T. J., Holbrook, N. M., Edwards, E. J. & Gutierrez, M. V. Relation between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant Cell Environ. 26, 443–450. https://doi.org/10.1046/j.1365-3040.2003.00975.x (2003).
Google Scholar
Orellana, R., Balam, M. & Bañuelos, I. Balance Ombrotérmico, evaluación climática. In Atlas de procesos territoriales de Yucatán (eds de Fuentes, A. G. et al.) 174–175 (Universidad Autónoma de Yucatán, 1999).
Instituto Nacional de Estadística Geografía e Informática, 2017. Anuario estadístico y geográfico de Quintana Roo. INEGI, México. https://www.datatur.sectur.gob.mx/ITxEF_Docs/QROO_ANUARIO. (Accessed 12 December 2019).
Espinoza-Avalos, J., Islebe, G. A. & Hernández-Arana, H. A. El sistema ecológico de la bahía de Chetumal/corozal: Costa occidental del mar caribe (El Colegio de la Frontera Sur, 2009).
McKee, T.B., Doesken, N.J. & Kelist, J. The relationship of drought frequency and duration to time scale. in American Meteorological Society, Proceedings of the Eighth Conference on Applied Climatology, 17–22 January, Anaheim, California 179–184 (1993).
Cheval, S. The Standardized Precipitation Index—An overview. Rom. J. Meteorol. 12(1–2), 17–64 (2015).
Koide, R. T., Robichaux, R. H., Morse, S. R. & Smith, C. M. Plant water status, hydraulic resistance and capacitance. In Plant Physiological Ecology, Field Methods and Instrumentation (eds Pearcy, R. W. et al.) 161–178 (Chapman and Hall, 1991). https://doi.org/10.1007/978-94-010-9013-1_9.
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675. https://doi.org/10.1038/nmeth.2089 (2012).
Google Scholar
StatSoft, Inc. STATISTICA (data analysis software system), version 12. www.statsoft.com (2013).
Source: Ecology - nature.com