in

El Niño-Southern Oscillation affects the water relations of tree species in the Yucatan Peninsula, Mexico

[adace-ad id="91168"]
  • 1.

    Murphy, P. G. & Lugo, A. E. Ecology of tropical dry forest. Ann. Rev. Ecol. Syst. 17, 67–88. https://doi.org/10.1146/annurev.es.17.110186.000435 (1986).

    Article 

    Google Scholar 

  • 2.

    Hasselquist, N. J., Allen, M. F. & Santiago, L. S. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence. Oecologia 164, 881–890. https://doi.org/10.1007/s00442-010-1725-y (2010).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Maass, M. et al. Long-term (33 years) rainfall and runoff dynamics in a tropical dry forest ecosystem in western Mexico: Management implications under extreme hydrometeorological events. For. Ecol. Manage. 426, 7–17. https://doi.org/10.1016/j.foreco.2017.09.040 (2018).

    Article 

    Google Scholar 

  • 4.

    NOAA. National Weather Service. Climate Prediction Center. Cold and warm episodes by season. http://www.cpc.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml. (Accessed 19 October 2019).

  • 5.

    Detto, M., Wright, J., Calderón, O. & Muller-Landau, H. C. Resource acquisition and reproductive strategies of tropical forest in response to the El Niño-Southern Oscillation. Nat. Commun. 9, 9–13. https://doi.org/10.1038/s41467-018-03306-9 (2018).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Bretfeld, M., Ewers, B. E. & Hal, J. S. Plant water use responses along secondary forest succession during the 2015–2016 El Niño drought in Panama. New Phytol. 219, 885–899. https://doi.org/10.1111/nph.15071 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 7.

    Meakem, V. et al. Role of tree size in moist tropical forest carbon cycling and water deficit responses. New Phytol. 219, 947–958. https://doi.org/10.1111/nph.14633 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Salmon, Y. et al. Drought impacts on tree phloem: From cell-level responses to ecological significance. Tree Physiol. 39, 173–191. https://doi.org/10.1093/treephys/tpy153 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 9.

    Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266. https://doi.org/10.1126/science.aat7631 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 10.

    Powers, J. S. et al. A catastrophic tropical drought kills hydraulically vulnerable tree species. Glob. Change Biol. 26, 3122–3133. https://doi.org/10.1111/gcb.15037 (2020).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Wigneron, J. P. et al. Tropical forests did not recover from the strong 2015–2016 El Niño event. Sci. Adv. 6, eaay4603. https://doi.org/10.1126/sciadv.aay4603 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Martinez-Vilalta, J. & Lloret, F. Drought-induced vegetation shifts in terrestrial ecosystems: The key role of regeneration dynamics. Glob. Planet. Change 144, 94–108. https://doi.org/10.1016/j.gloplacha.2016.07.009 (2016).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684. https://doi.org/10.1016/j.foreco.2009.09.001 (2010).

    Article 

    Google Scholar 

  • 14.

    Anderegg, W. R. L. et al. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. PNAS 113, 5024–5029. https://doi.org/10.1073/pnas.1525678113 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 15.

    Greenwood, S. et al. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol. Lett. 20, 539–553. https://doi.org/10.1111/ele.12748 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 16.

    Sperry, J. S., Meinzer, F. C. & McCulloh, K. A. Safety and efficiency conflicts in hydraulic architecture: Scaling from tissues to trees. Plant Cell Environ. 31, 632–645. https://doi.org/10.1111/j.1365-3040.2007.01765.x (2008).

    Article 
    PubMed 

    Google Scholar 

  • 17.

    Borchert, R. & Pockman, W. T. Water storage capacitance and xylem tension in isolated branches of temperate and tropical trees. Tree Physiol. 25, 457–466. https://doi.org/10.1093/treephys/25.4.457 (2005).

    Article 
    PubMed 

    Google Scholar 

  • 18.

    Valdez-Hernández, M., Andrade, J. L., Jackson, P. C. & Rebolledo-Vieyra, M. Phenology of five tree species of a tropical dry forest in Yucatán, Mexico: Effects of environmental and physiological factors. Plant Soil 329, 155–171. https://doi.org/10.1007/s11104-009-0142-7 (2010).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Santiago, L. S. et al. Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytol. 218, 1015–1024. https://doi.org/10.1111/nph.15058 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 20.

    Bussotti, F., Pollastrini, M., Holland, V. & Bruggemann, W. Functional traits and adaptive capacity of European forests to climate change. Environ. Experim. Bot. 111, 91–113. https://doi.org/10.1016/j.envexpbot.2014.11.006 (2015).

    Article 

    Google Scholar 

  • 21.

    Reich, P. B. & Borchert, R. Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. J. Ecol. 72(1), 61–74. https://doi.org/10.2307/2260006 (1984).

    Article 

    Google Scholar 

  • 22.

    Holbrook, N. M., Whitbeck, J. L. & Mooney, H. A. Drought responses of neotropical dry forest trees. In Seasonally Dry Tropical Forests (eds Bullock, S. H. et al.) (Cambridge University Press, 1995). https://doi.org/10.1017/CBO9780511753398.010.

    Google Scholar 

  • 23.

    Wolfe, B. T. & Kursar, T. A. Diverse patterns of stored water use among saplings in seasonally dry tropical forests. Oecologia 179, 925–936. https://doi.org/10.1007/s00442-015-3329-z (2015).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 24.

    Borchert, R., Rivera, G. & Hagnauer, W. Modification of vegetative phenology in a tropical semi-deciduous forest by abnormal drought and rain. Biotropica 34, 27–39. https://doi.org/10.1111/j.1744-7429.2002.tb00239.x (2002).

    Article 

    Google Scholar 

  • 25.

    Markesteijn, L., Poorter, L., Paz, H., Sack, L. & Bongers, F. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environ. 34, 137–148. https://doi.org/10.1111/j.1365-3040.2010.02231.x (2011).

    Article 
    PubMed 

    Google Scholar 

  • 26.

    Aragón-Moreno, A. A., Islebe, G. A., Torrescano-Valle, N. & Arellano-Verdejo, J. Middle and late Holocene mangrove dynamics of the Yucatan Peninsula, Mexico. J. S. Am. Earth Sci. 85, 307–311. https://doi.org/10.1016/j.jsames.2018.05.015 (2018).

    Article 

    Google Scholar 

  • 27.

    De la Barreda, B., Metcalfe, E. S. & Boyd, D. S. Precipitation regionalization, anomalies and drought occurrence in the Yucatan peninsula, Mexico. Int. J. Climatol. 40(10), 1–15. https://doi.org/10.1002/joc.6474 (2020).

    Article 

    Google Scholar 

  • 28.

    IPCC. Summary for Policymakers. In: Global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (V. Masson-Delmotte, P., Zhai, H. O., Pörtner, D., Roberts, J., Skea, P.R., Shukla, A., Pirani, W., Moufouma-Okia, C., Péan, R., Pidcock, S., Connors, J.B.R., Matthews, Y., Chen, X., Zhou, M. I., Gomis, E., Lonnoy, T., Maycock, M., Tignor, T., Waterfield, eds.). World Meteorological Organization, Geneva, Switzerland. https://www.ipcc.ch/sr15/ (Accessed 15 November 2019).

  • 29.

    Eller, C. B., Rowland, L. & Oliveira, R. S. Modelling tropical forest responses to drought and El Niño with a stomatal optimization model based on xylem hydraulics. Phil. Trans. R. Soc. B 373, 1–12. https://doi.org/10.1098/rstb.2017.0315 (2018).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Feng, X., Porporato, A. & Rodriguez-Iturbe, I. Changes in rainfall seasonality in the tropics. Nat. Clim. Chang. 3(9), 811–815. https://doi.org/10.1038/nclimate1907 (2013).

    ADS 
    Article 

    Google Scholar 

  • 31.

    Goldstein, G. et al. Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant Cell Environ. 21, 397–406. https://doi.org/10.1046/j.1365-3040.1998.00273.x (1998).

    Article 

    Google Scholar 

  • 32.

    Landsberg, J. & Waring, R. Water relations in tree physiology: where to from here?. Tree Physiol. 37, 18–32. https://doi.org/10.1093/treephys/tpw102 (2016).

    Article 

    Google Scholar 

  • 33.

    Kim, J. S. & Kug, J.-S. Increased atmospheric CO2 growth rate during El Niño driven by reduced terrestrial CO2 capture in the CMIP5 ESMs. J. Clim. 29, 8783–8805. https://doi.org/10.1175/JCLI-D-14-00672.1 (2016).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Kim, J. S., Kug, J.-S. & Jeong, S. Intensification of terrestrial carbon cycle related to El Niño-Southern Oscillation under greenhouse warming. Nat. Commun. 8, 1674. https://doi.org/10.1038/s41467-017-01831-7 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Wang, Q., Cai, W., Zeng, L. & Wang, D. Nonlinear meridional moisture advection and the ENSO-southern China rainfall teleconnection. Geophys. Res. Lett. 45(9), 4353–4360. https://doi.org/10.1029/2018GL077446 (2018).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Wang, Q., Wang, Y., Sui, J., Zhou, W. & Li, D. Effects of weak and strong winter currents on the thermal state of the South China Sea. J. Clim. 34(1), 313–325. https://doi.org/10.1175/JCLI-D-19-0790.1 (2021).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Xie, S.-P. et al. Eastern Pacific ITCZ dipole and ENSO diversity. J. Clim. 31, 4449–4462. https://doi.org/10.1175/JCLI-D-17-0905.1 (2018).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Peng, Q., Xie, S.-P., Wang, D., Zheng, X.-T. & Zhang, H. Coupled ocean–atmosphere dynamics of the 2017 extreme coastal El Niño. Nat. Commun. 10, 298. https://doi.org/10.1038/s41467-018-08258-8 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Peng, Q. et al. Eastern Pacific winds in the evolution of El Niño: implications for ENSO diversity. J. Clim. 33, 3197–3212. https://doi.org/10.1175/JCLI-D-19-0435.1 (2020).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Barkhodarian, A., Saatchi, S. S., Behrangi, A., Loikith, P. C. & Mechoso, C. R. A recent systematic increase in vapor pressure deficit over tropical South America. Sci. Rep. 9, 15331. https://doi.org/10.1038/s41598-019-51857-8 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 41.

    Meinzer, F. C., James, S. A., Goldstein, G. & Woodruff, D. Whole-tree water transport scales sapwood capacitance in tropical forest canopy trees. Plant Cell Environ. 26, 1147–1155. https://doi.org/10.1046/j.1365-3040.2003.01039.x (2003).

    Article 

    Google Scholar 

  • 42.

    Luo, Z. et al. Responses of plant water use to a severe summer drought for two subtropical tree species in the central southern China. J. Hydrol. Reg. Stud. 8, 1–9. https://doi.org/10.1016/j.ejrh.2016.08.001 (2016).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Vinya, R., Malhi, Y., Brown, N. & Fisher, J. Functional coordination between branch hydraulic properties and leaf functional traits in miombo woodlands: Implications for water stress management and species habitat preference. Acta Physiol. Plant 34, 1701–1710. https://doi.org/10.1007/s11738-012-0965-3 (2012).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Choat, B., Ball, M. C., Luly, J. G. & Holtum, J. A. M. Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north-eastern Autralia. Trees 19, 305–311. https://doi.org/10.1007/s00468-004-0392-1 (2005).

    Article 

    Google Scholar 

  • 45.

    Romero, E., González, E. J., Meave, J. A. & Terrazas, T. Wood anatomy of dominant species with contrasting ecological performance in tropical dry forest succession. Plant Biosyst. 154, 524–534. https://doi.org/10.1080/11263504.2019.1651775 (2019).

    Article 

    Google Scholar 

  • 46.

    Pineda-García, F., Paz, H. & Meinzer, F. C. Drought resistance in early and late secondary successional species from a tropical dry forest: The interplay between xylem resistance to embolism, sapwood water storage and leaf shedding. Plant Cell Environ. 36, 405–418. https://doi.org/10.1111/j.1365-3040.2012.02582.x (2013).

    Article 
    PubMed 

    Google Scholar 

  • 47.

    Choat, B., Sack, L. & Holbrook, M. Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation. New Phytol. 175, 686–698. https://doi.org/10.1111/j.1469-8137.2007.02137.x (2007).

    Article 
    PubMed 

    Google Scholar 

  • 48.

    Fallas-Cedeño, L., Holbrook, N. M., Rocha, O. J., Vásquez, N. & Gutiérrez-Soto, M. Phenology, lignotubers, and water relations of Cochlospermum vitifolium, a pioneer tropical dry forest tree in Costa Rica. Biotropica 42, 104–111. https://doi.org/10.1111/j.1744-7429.2009.00539.x (2010).

    Article 

    Google Scholar 

  • 49.

    Quintanar-Isaías, A., Velasquez-Nuñez, M., Solares-Arenas, F., Pérez-Olvera, C. P. & Torre-Blanco, A. Secondary stem anatomy and uses or four drought-deciduous species of a tropical dry forest in Mexico. Rev. Biol. Trop. 53, 29–48. https://doi.org/10.15517/RBT.V53I1-2.14297 (2005).

    Article 

    Google Scholar 

  • 50.

    Veneklaas, E. J., Santos-Silva, M. P. & den Ouden, F. Determinants of growth rate in Ficus benjamina L. compared to related faster-growing woody and herbaceous species. Sci. Hortic. 93, 75–84. https://doi.org/10.1016/S0304-4238(01)00315-6 (2002).

    Article 

    Google Scholar 

  • 51.

    Mediavilla, S., Escudero, A. & Heilmeier, H. Internal leaf anatomy and photosynthetic resource-use efficiency: Interspecific and intraspecific comparisons. Tree Physiol. 21, 251–259. https://doi.org/10.1093/treephys/21.4.251 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 52.

    Peguero-Pina, J. J., Sancho-Knapik, D. & Gil-Pelegrin, E. Ancientcell structural traits and photosynthesis in today’s environment. J. Exp. Bot. 68, 1389–1392. https://doi.org/10.1093/jxb/erx081 (2017).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Kitajima, K. & Poorter, L. Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytol. 186, 708–721. https://doi.org/10.1111/j.1469-8137.2010.03212.x (2010).

    Article 
    PubMed 

    Google Scholar 

  • 54.

    Schwedenman, L., Pendall, E., Sanchez-Bragado, R., Kunert, N. & Holscher, D. Tree water uptake in a tropical plantation varying in tree diversity: Interspecific differences, seasonal shifts and complementary. Ecohydrology 8, 1–12. https://doi.org/10.1002/eco.1479 (2015).

    Article 

    Google Scholar 

  • 55.

    Reyes-García, C., Andrade, J. L., Simá, J. L., Us-Santamaría, R. & Jackson, P. C. Sapwood to heartwood ratio affects whole-tree water use in dry forest legume and non-legume trees. Trees 26, 1317–1330. https://doi.org/10.1007/s00468-012-0708-5 (2012).

    Article 

    Google Scholar 

  • 56.

    Santiago, L. et al. Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia 140, 543–550. https://doi.org/10.1007/s00442-004-1624-1 (2004).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 57.

    Li, X. et al. Tree hydraulic traits are coordinated and strongly linked to climate-of-origin across a rainfall gradient. Plant Cell Environ. 41, 646–660. https://doi.org/10.1111/pce.13129 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 58.

    Querejeta, J. I., Estrada-Medina, H., Allen, M. F., Jiménez-Osorio, J. J. & Ruenes, R. Utilization of bedrock water by Brosimum alicastrum trees growing on shallow soil atop limestone in a dry tropical climate. Plant Soil 287, 187–197. https://doi.org/10.1007/s11104-006-9065-8 (2006).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Scholz, F. G., Phillips, N. G., Bucci, S. J., Meinzer, F. C. & Goldstein, G. Hydraulic capacitance: Biophysics and functional significance of internal water sources in relation to tree size. In Size- and Age-Related Changes in Tree Structure and Function (eds Meinzer, F. C. et al.) 341–362 (Springer, 2011). https://doi.org/10.1007/978-94-007-1242-3_13.

    Google Scholar 

  • 60.

    Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 139, 1–5. https://doi.org/10.1038/nplants.2015.139 (2015).

    Article 

    Google Scholar 

  • 61.

    Sobrado, M. A. Embolism vulnerability in drought-deciduous and evergreen species of a tropical dry forest. Acta Oecol. 18, 383–391. https://doi.org/10.1016/S1146-609X(97)80030-6 (1997).

    ADS 
    Article 

    Google Scholar 

  • 62.

    Brodribb, T. J., Holbrook, N. M., Edwards, E. J. & Gutierrez, M. V. Relation between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant Cell Environ. 26, 443–450. https://doi.org/10.1046/j.1365-3040.2003.00975.x (2003).

    Article 

    Google Scholar 

  • 63.

    Orellana, R., Balam, M. & Bañuelos, I. Balance Ombrotérmico, evaluación climática. In Atlas de procesos territoriales de Yucatán (eds de Fuentes, A. G. et al.) 174–175 (Universidad Autónoma de Yucatán, 1999).

    Google Scholar 

  • 64.

    Instituto Nacional de Estadística Geografía e Informática, 2017. Anuario estadístico y geográfico de Quintana Roo. INEGI, México. https://www.datatur.sectur.gob.mx/ITxEF_Docs/QROO_ANUARIO. (Accessed 12 December 2019).

  • 65.

    Espinoza-Avalos, J., Islebe, G. A. & Hernández-Arana, H. A. El sistema ecológico de la bahía de Chetumal/corozal: Costa occidental del mar caribe (El Colegio de la Frontera Sur, 2009).

    Google Scholar 

  • 66.

    McKee, T.B., Doesken, N.J. & Kelist, J. The relationship of drought frequency and duration to time scale. in American Meteorological Society, Proceedings of the Eighth Conference on Applied Climatology, 17–22 January, Anaheim, California 179–184 (1993).

  • 67.

    Cheval, S. The Standardized Precipitation Index—An overview. Rom. J. Meteorol. 12(1–2), 17–64 (2015).

  • 68.

    Koide, R. T., Robichaux, R. H., Morse, S. R. & Smith, C. M. Plant water status, hydraulic resistance and capacitance. In Plant Physiological Ecology, Field Methods and Instrumentation (eds Pearcy, R. W. et al.) 161–178 (Chapman and Hall, 1991). https://doi.org/10.1007/978-94-010-9013-1_9.

    Google Scholar 

  • 69.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675. https://doi.org/10.1038/nmeth.2089 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    StatSoft, Inc. STATISTICA (data analysis software system), version 12. www.statsoft.com (2013).


  • Source: Ecology - nature.com

    Crowdsourcing data on road quality and excess fuel consumption

    Ice melts on US-Sudan relations, providing new opportunities