in

Electrical conductivity as a driver of biological and geological spatial heterogeneity in the Puquios, Salar de Llamara, Atacama Desert, Chile

  • 1.

    Rothschild, L. & Mancinelli, R. Life in extreme environments. Nature 409, 1092–1101 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Cavicchioli, R. Extremophiles and the search for extraterrestrial life. Astrobiology 2, 281–292 (2002).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Parro, V. et al. A microbial oasis in the hypersaline atacama subsurface discovered by a life detector chip: Implications for the search for life on mars. Astrobiology 11, 969–996 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Lee, C. J. D. et al. NaCl-saturated brines are thermodynamically moderate, rather than extreme, microbial habitats. FEMS Microbiol. Rev. 42, 672–693 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Coleine, C. et al. Specific adaptations are selected in opposite sun exposed Antarctic cryptoendolithic communities as revealed by untargeted metabolomics. PLoS ONE 15, 1–17 (2020).

    Article 
    CAS 

    Google Scholar 

  • 6.

    Rathour, R. et al. A comparative metagenomic study reveals microbial diversity and their role in the biogeochemical cycling of Pangong lake. Sci. Total Environ. 731, 139074 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Suosaari, E. P. et al. New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia. Sci. Rep. 6, 1–13 (2016).

    Article 
    CAS 

    Google Scholar 

  • 8.

    Suosaari, E. P. et al. Stromatolite provinces of Hamelin pool: Physiographic controls on stromatolites and associated lithofacies. J. Sediment. Res. 89, 207–226 (2019).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Wong, H., Ahmed-Cox, A. & Burns, B. Molecular ecology of hypersaline microbial mats: Current insights and new directions. Microorganisms 4, 6 (2016).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 10.

    Grotzinger, J. R. & Knoll, A. H. Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks?. Annu. Rev. Earth Planet. Sci. 27, 313–358 (1999).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Grotzinger, J. P. & James, N. P. Precambrian carbonates: Evolution of understanding. In Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World (eds Grotzinger, J. P. & James, N. P.) 3–20 (Society for Sedimentary Geology, 2000).

    Chapter 

    Google Scholar 

  • 12.

    Demergasso, C. et al. Microbial mats from the Llamara salt flat, northern Chile. Rev. Chil. Hist. Nat. 76, 485–499 (2003).

    Article 

    Google Scholar 

  • 13.

    Demergasso, C. et al. Distribution of prokaryotic genetic diversity in athalassohaline lakes of the Atacama Desert, Northern Chile. FEMS Mirobiol. Ecol. 48, 57–69 (2004).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Saghaï, A. et al. Unveiling microbial interactions in stratified mat communities from a warm saline shallow pond. Environ. Microbiol. 19, 2405–2421 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 15.

    Shen, J., Zerkle, A. L., Stueeken, E. & Claire, M. W. Nitrates as a potential N supply for microbial ecosystems in a hyperarid mars analog system. Life 9, 79 (2019).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Albarracín, V. H., Galván, F. S. & Farías, M. E. Extreme microbiology at Laguna Socompa: A high-altitude Andean lake (3570 m a.s.l.) in Salta, Argentina. In Microbial Ecosystems in Central Andes Extreme Environments: Biofilms, Microbial Mats, Microbialites and Endoevaporites (ed. Farías, M. E.) 205–220 (Springer, 2020).

    Chapter 

    Google Scholar 

  • 17.

    Aszalós, J. M. et al. Bacterial diversity of a high-altitude permafrost thaw pond located on Ojos del Salado (Dry Andes, Altiplano-Atacama Region). Astrobiology 20, 754–765 (2020).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 18.

    Boidi, F. J., Mlewski, E. C., Gomez, F. J. & Gérard, E. Characterization of microbialites and microbial mats of the Laguna Negra hypersaline lake (Puna of Catamarca, Argentina). In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 183–203 (Springer, 2020).

    Chapter 

    Google Scholar 

  • 19.

    Farías, M. E. & Saona Acuña, L. A. Modern microbial mats and endoevaporite systems in Andean lakes: A general approach. In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 21–33 (Springer, 2020).

    Chapter 

    Google Scholar 

  • 20.

    Farías, M. E., Villafañe, P. G. & Lencina, A. I. Integral propsection of andean microbial ecosystem project. In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 245–260 (Springer, 2020).

    Chapter 

    Google Scholar 

  • 21.

    Gomez, F. J., Boidi, F. J., Mlewski, E. C. & Gérard, E. The carbonate system in Hypersaline Lakes: The case of Laguna Negra (in the Puna Region of Catamarca, Argentina). In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 231–242 (Springer, 2020).

    Chapter 

    Google Scholar 

  • 22.

    Otálora, F. et al. Hydrochemical and mineralogical evolution through evaporitic processes in Salar de Llamara Brines (Atacama, Chile). ACS Earth Sp. Chem. 4, 882–896 (2020).

    Article 
    CAS 

    Google Scholar 

  • 23.

    Rasuk, M. C., Visscher, P. T., Leiva, M. C. & Farías, M. E. Mats and microbialites from Laguna La Brava. In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 221–230 (Springer, 2020).

    Chapter 

    Google Scholar 

  • 24.

    Demergasso, C. et al. Novelty and spatio-temporal heterogeneity in the bacterial diversity of hypersaline Lake Tebenquiche (Salar de Atacama). Extremophiles 12, 491–504 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    del Rocío Mora-Ruiz, M. & Díaz-Gil, C. Microbial diversity in athalassohaline Argentinean Salterns. In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 165–179 (Springer, 2020).

    Chapter 

    Google Scholar 

  • 26.

    Vignale, F. A. et al. Lithifying and non-lithifying microbial ecosystems in the wetlands and salt flats of the central Andes. Microb. Ecol. https://doi.org/10.1007/s00248-021-01725-8 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 27.

    Stivaletta, N., Barbieri, R., Cevenini, F. & López-García, P. Physicochemical conditions and microbial diversity associated with the evaporite deposits in the Laguna de la Piedra (Salar de Atacama, Chile). Geomicrobiol. J. 28, 83–95 (2011).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Farías, M. E. et al. Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama, Chile. Extremophiles 18, 311–329 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 29.

    Fernandez, A. B. et al. Microbial diversity in sediment ecosystems (evaporites domes, microbial mats, and crusts) of Hypersaline Laguna Tebenquiche, Salar de Atacama, Chile. Front. Microbiol. 7, 1–18 (2016).

    Article 

    Google Scholar 

  • 30.

    Rasuk, M. C. et al. Bacterial diversity in microbial mats and sediments from the Atacama Desert. Microb. Ecol. 71, 44–56 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Farias, M. E. et al. Prokaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems at La Brava, a hypersaline lake at Salar de Atacama, Chile. PLoS ONE 12, 1–25 (2017).

    Article 
    CAS 

    Google Scholar 

  • 32.

    Gutiérrez-Preciado, A. et al. Functional shifts in microbial mats recapitulate early Earth metabolic transitions. Nat. Ecol. Evol. 2, 1700–1708 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Escudero, L. et al. A thiotrophic microbial community in an acidic brine lake in Northern Chile. Antonie Van Leeuwenhoek 111, 1403–1419 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Chong-Díaz, G. Die Salare in Nordchile—Geologie, Struktur und Geochemie. Geotekton. Forsch. 67, 1–146 (1984).

    Google Scholar 

  • 35.

    Risacher, F. & Fritz, B. Geochemistry of Bolivian salars, Lipez, southern Altiplano: Origin of solutes and brine evolution. Geochim. Cosmochim. Acta 55, 687–705 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 36.

    Pueyo, J. J., Chong, G. & Jensen, A. Neogene evaporites in Desert volcanic environments: Atacama Desert, northern Chile. Sedimentology 48, 1411–1431 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 37.

    Simicic Hernández, Y. P. Thickness Distribution of the Oligo-Neogenous Sedimentary Cover of the Tamarugal Pampas, Northern Chile (20 ° 45 ’to 21 ° 30’S) (Universidad de Chile, 2015).

    Google Scholar 

  • 38.

    Cabrera, S., Bozzo, S. & Fuenzalida, H. Variations in UV radiation in Chile. J. Photochem. Photobiol. B Biol. 28, 137–142 (1995).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Cabrol, N. A. et al. Life in the Atacama: Searching for life with rovers (science overview). J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2006JG000298 (2007).

    Article 

    Google Scholar 

  • 40.

    Solari, M. The unexplored geobiological heritage of Chile: Key to understand the past and future. In XIV Congr. Geológico Chil. 1–5 (2015).

  • 41.

    Rasuk, M. C. et al. Microbial characterization of microbial ecosystems associated to evaporites domes of gypsum in Salar de Llamara in Atacama Desert. Microb. Ecol. 68, 483–494 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Surma, J., Assonov, S., Herwartz, D., Voigt, C. & Staubwasser, M. The evolution of 17O-excess in surface water of the arid environment during recharge and evaporation. Sci. Rep. 8, 4972 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Rasuk, M. C., Leiva, M. C., Kurth, D. & Farías, M. E. Complete characterization of stratified ecosystems of the Salar de Llamara (Atacama Desert). In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 153–164 (Springer, 2020).

    Chapter 

    Google Scholar 

  • 44.

    Kiefer, E., Dorr, M., Ibbeken, H. & Gotze, H. Gravity-based mass balance of an alluvial fan giant: The Arcas Fan, Pampa del Tamarugal, Northern Chile. Rev. Geol. Chile 24, 165–185 (1997).

    Google Scholar 

  • 45.

    Houston, J. & Hartley, A. J. The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. Int. J. Climatol. 23, 1453–1464 (2003).

    Article 

    Google Scholar 

  • 46.

    Dunai, T. J., López, G. A. G. & Juez-Larré, J. Oligocene-Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms. Geology 33, 321–324 (2005).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Hartley, A. J., Chong, G., Houston, J. & Mather, A. 150 million years of climatic stability: Evidence from the Atacama Desert, northern Chile. J. Geol. Soc. Lond. 162, 421–424 (2005).

    Article 

    Google Scholar 

  • 48.

    Clarke, J. D. A. Antiquity of aridity in the Chilean Atacama Desert. Geomorphology 73, 101–114 (2006).

    ADS 
    Article 

    Google Scholar 

  • 49.

    Houston, J. Evaporation in the Atacama Desert: An empirical study of spatio-temporal variations and their causes. J. Hydrol. 330, 402–412 (2006).

    ADS 
    Article 

    Google Scholar 

  • 50.

    Fuenzalida, H. & Rutllant, J. Estudio Sobre el Origen del Vapor de agua que Precipita en el Invierno Altiplánico (1986).

  • 51.

    Grosjean, M., Geyh, M. A., Messerli, B. & Schotterer, U. Late-glacial and early Holocene lake sediments, ground-water formation and climate in the Atacama Altiplano 22–24°S. J. Paleolimnol. 14, 241–252 (1995).

    ADS 
    Article 

    Google Scholar 

  • 52.

    Garreaud, R. Multiscale analysis of the summertime precipitation over the central Andes. Mon. Weather Rev. 127, 901–921 (1999).

    ADS 
    Article 

    Google Scholar 

  • 53.

    Houston, J. Groundwater recharge through an alluvial fan in the Atacama Desert, northern Chile: Mechanisms, magnitudes and causes. Hydrol. Process. 16, 3019–3035 (2002).

    ADS 
    Article 

    Google Scholar 

  • 54.

    Marazuela, M. A., Vázquez-Suñé, E., Ayora, C., García-Gil, A. & Palma, T. Hydrodynamics of salt flat basins: The Salar de Atacama example. Sci. Total Environ. 651, 668–683 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 55.

    Cereceda, P., Larrain, H., Osses, P., Farías, M. & Egaña, I. The spatial and temporal variability of fog and its relation to fog oases in the Atacama Desert, Chile. Atmos. Res. 87, 312–323 (2008).

    Article 

    Google Scholar 

  • 56.

    del Río, C. et al. The role of topography in the spatial distribution of the low stratocumulus cloud and fog in the Peruvian coastal Desert. In AGU Fall Meeting Abstracts 2018, A31J-2979 (2018).

  • 57.

    Hasler, K., Jaque, I., Pucheu, A. & Ortiz, C. Análisis de la Información Histórica de la Operación de la Medida de Mitigación. Estudio de Impacto Ambiental: Modification parcial del Sistema del Sistema de Reinyección en los puquios de Llamara, Elaborado por Geobiota (2020).

  • 58.

    Ordoñez, R., Hasler, K., Pucheu, A. & Ortiz, C. Modelo Numérico Hidrogeológico Acuífero Salar de Llamara. Estudio de Impacto Ambiental, Modificación Parcial del Sistema de reinyección en los Puquios de Llamara, elaborado por Geobiota (2020).

  • 59.

    Babel, M. Models for evaporite, selenite and gypsum microbialite deposition in ancient saline basins. Acta Geol. Pol. 54, 219-U6 (2004).

    Google Scholar 

  • 60.

    Rumrich, U., Lange-Bertalot, H. & Rumrich, M. Diatoms of the Andes. Annotated diatom monographs. Iconogr. Diatomol. 9, 671 (2000).

    Google Scholar 

  • 61.

    Lowe, R. L. Keeled and canalled raphid diatoms. In Freshwater Algae of North America (ed. Lowe, R. L.) 669–684 (Elsevier, 2003).

    Chapter 

    Google Scholar 

  • 62.

    Whitton, B. A. & Kelly, M. G. Use of algae and other plants for monitoring rivers. Aust. J. Ecol. 20, 45–56 (1995).

    Article 

    Google Scholar 

  • 63.

    Burow, L. C. et al. Identification of Desulfobacterales as primary hydrogenotrophs in a complex microbial mat community. Geobiology 12, 221–230 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Garcés, I. et al. Características geoquímicas generales del sistema salino del Salar de Llamara (Chile). Estud. Geol. 52, 23–35 (1996).

    Article 

    Google Scholar 

  • 65.

    López, P. L., Auqué, L. F., Garcés, I. & Chong, G. Características geoquímicas y pautas de evolución de las salmueras superficiales del Salar de Llamara, Chile. Rev. Geol. de Chile 26, 89–108 (1999).

    Article 

    Google Scholar 

  • 66.

    Kampf, S. K. & Tyler, S. W. Spatial characterization of land surface energy fluxes and uncertainty estimation at the Salar de Atacama, Northern Chile. Adv. Water Resour. 29, 336–354 (2006).

    ADS 
    Article 

    Google Scholar 

  • 67.

    Des-Marais, D. J. The Biogeochemistry of Hypersaline Microbial Mats. In Advances in Microbial Ecology (ed. Jones, J. G.) (Springer, 1995).

    Google Scholar 

  • 68.

    Vogel, M. B. et al. The role of biofilms in the sedimentology of actively forming gypsum deposits at Guerrero Negro, Mexico. Astrobiology 9, 875–893 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 69.

    Vogel, M. B. et al. Biological influences on modern sulfates: Textures and composition of gypsum deposits from Guerrero Negro, Baja California Sur, Mexico. Sediment. Geol. 223, 265–280 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 70.

    Ali-Bik, M. W., Metwally, H. I. M., Wali, A. M. A. & Kamel, M. G. Facies and geochemistry of non-marine gypsum, EMISAL, Egypt. Geol. Acta 11, 409–420 (2013).

    CAS 

    Google Scholar 

  • 71.

    Taher, A. G. Formation and calcification of modern gypsum-dominated stromatolites, EMISAL, Fayium, Egypt. Facies 60, 721–735 (2014).

    Article 

    Google Scholar 

  • 72.

    Handford, C. Sedimentology and evaporite genesis in a Holocene continental-sabkha playa basin—Bristol Dry Lake, California. Sedimentology 29, 239–253 (1982).

    ADS 
    Article 

    Google Scholar 

  • 73.

    Gerdes, G., Krumbein, W. E. & Holtkamp, E. Salinity and water activity related zonation of microbial communities and potential stromatolites of the Gavish Sabkha. In Hypersaline Ecosystems. Ecological Studies (Analysis and Synthesis) (eds Friedman, G. M. & Krumbein, W. E.) 238–236 (Springer, 1985).

    Chapter 

    Google Scholar 

  • 74.

    Davie, A. W., Mitrovic, S. M. & Lim, R. P. Succession and accrual of benthic algae on cobbles of an upland river following scouring. Inl. Waters 2, 89–100 (2012).

    Article 

    Google Scholar 

  • 75.

    Cohen, Y., Jørgensen, B. B., Padan, E. T. & Shilo, M. Sulphide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Nature 257, 489–492 (1975).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 76.

    Oren, A. & Shilo, M. Anaerobic heterotrophic dark metabolism in the cyanobacterium Oscillatoria limnetica: Sulfur respiration and lactate fermentation. Arch. Microbiol. 122, 77–84 (1979).

    CAS 
    Article 

    Google Scholar 

  • 77.

    Muñoz, J., Amat, F., Green, A. J., Figuerola, J. & Gómez, A. Bird migratory flyways influence the phylogeography of the invasive brine shrimp Artemia franciscana in its native American range. PeerJ 2013, 1–28 (2013).

    Google Scholar 

  • 78.

    Clegg, J. S. & Trotman, C. N. A. Physiological and biochemical aspects of Artemia ecology. In Artemia: Basic and Applied Biology (eds Abatzopoulos, T. J. et al.) 129–170 (Springer, 2002).

    Chapter 

    Google Scholar 

  • 79.

    Collado, G. A., Valladares, M. A. & Méndez, M. A. Hidden diversity in spring snails from the andean altiplano, the second highest plateau on earth, and the Atacama Desert, the driest place in the world. Zool. Stud. 52, 1–13 (2013).

    Article 

    Google Scholar 

  • 80.

    Herbst, D. B., Conte, F. P. & Brookes, V. J. Osmoregulation in an alkaline salt lake insect, Ephydra (Hydropyrus) hians Say (Diptera: Ephydridae) in relation to water chemistry. J. Insect Physiol. 34, 903–909 (1988).

    CAS 
    Article 

    Google Scholar 

  • 81.

    Cycil, L. M. et al. Metagenomic insights into the diversity of halophilic microorganisms indigenous to the Karak Salt Mine, Pakistan. Front. Microbiol. 11, 1567 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Dillon, J. G., Carlin, M., Gutierrez, A., Nguyen, V. & McLain, N. Patterns of microbial diversity along a salinity gradient in the Guerrero Negro solar saltern, Baja CA Sur, Mexico. Front. Microbiol. https://doi.org/10.3389/fmicb.2013.00399 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 83.

    Benlloch, S. et al. Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ. Microbiol. 4, 349–360 (2002).

    PubMed 
    Article 

    Google Scholar 

  • 84.

    Casamayor, E. O. et al. Changes in Archaeal, bacterial and Eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ. Microbiol. 4, 338–348 (2002).

    PubMed 
    Article 

    Google Scholar 

  • 85.

    Gorrasi, S. et al. Spatio-temporal variation of the bacterial communities along a salinity gradient within a thalassohaline environment (Saline di Tarquinia Salterns, Italy). Molecules 26, 1338 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 86.

    Campbell, B. J. & Kirchman, D. L. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J. 7, 210–220 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 87.

    Gorbushina, A. A. Life on the rocks. Environ. Microbiol. 9, 1613–1631 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 88.

    Wierzchos, J. et al. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front. Microbiol. 6, 1–17 (2015).

    Article 

    Google Scholar 

  • 89.

    Cody, R. D. & Cody, A. M. Gypsum nucleation and crystal morphology in analog saline terrestrial environments. J. Sediment. Res. 58, 247–255 (1988).

    CAS 

    Google Scholar 

  • 90.

    Arp, G., Thiel, V., Reimer, A., Michaelis, W. & Reitner, J. Biofilm exopolymers control microbialite formation at thermal springs discharging into the alkaline Pyramid Lake, Nevada, USA. Sediment. Geol. 126, 159–176 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 91.

    Dupraz, C. et al. Processes of carbonate precipitation in modern microbial mats. Earth-Sci. Rev. 96, 141–162 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 92.

    Cabestrero, Ó. & Sanz-Montero, M. E. Brine evolution in two inland evaporative environments: Influence of microbial mats in mineral precipitation. J. Paleolimnol. 59, 139–157 (2016).

    Article 

    Google Scholar 

  • 93.

    Farías, M. E. Microbial Ecosystems in Central Andes Extreme Environments (Springer, 2020).

    Book 

    Google Scholar 

  • 94.

    Oren, A. Thermodynamic limits to microbial life at high salt concentrations. Environ. Microbiol. 13, 1908–1923 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 95.

    Rice, E. W., Baird, R. B., Eaton, A. D. & Clesceri, L. S. Standard Methods for the Examination of Water and Wastewater, 22nd Edition. (APHA American Public Health Association, 2012).

  • 96.

    Díaz, C. & Maidana, N. I. Diatomeas de los Salares Atacama y Punta Negra II Región-Chile (Centro de Ecología Aplicada Ltda. & Minera Escondida Ltda, 2005).

    Google Scholar 

  • 97.

    Patrick, R. Results of Research in the Antofagasta Ranges of Chile and Bolivia. II. Diatoms (Bacillariophyceae) from the Alimentary tract of Phoenicoparrus jamesi (1961).

  • 98.

    Frenguelli, J. Diatomeas del Río de la Plata. Rev. del Mus. la Plata Sección Bot. 3, 213–334 (1941).

    Google Scholar 

  • 99.

    Parra, O., González, M., Dellarossa, V., Rivera, P. & Orellana, M. Taxonomic Manual of Phytoplankton of Continental Waters with Special Reference to the Phytoplankton of Chile: Chlorophyceae. Part III: Cryptophyceae, Dinophyceae, Euglenophyceae (1982).

  • 100.

    Parra, O. & González, M. Taxonomic Manual of Phytoplankton of Continental Waters with Special Reference to the Phytoplankton of Chile: Chlorophyceae. Part I: Volvocales, Tetrasporales, Chlorococcales and Ulothricales (1983).

  • 101.

    Seeligmann, C. & Maidana, N. I. Diatomeas (Bacillariophyceae) en ambientes de altura de la provincia de Catamarca (Argentina). Boletín Soc. Argentina Bot. 38, 39–50 (2003).

    Google Scholar 

  • 102.

    Seeligmann, C., Maidana, N. I. & Morales, M. Diatoms (Bacillariophyceae) of high altitude wetlands in the Province of Jujuy-Argentina. Boletín Soc. Argentina Bot. 43, 1–17 (2008).

    Google Scholar 

  • 103.

    Maidana, N. I. & Seeligmann, C. Diatomeas (Bacillariophyceae) de ambientes acuáticos de altura de la Provincia de Catamarca, Argentina II. Boletín la Soc. Argentina Bot. 41, 1–13 (2006).

    Google Scholar 

  • 104.

    Álvarez Blanco, I., Cejudo Figueiras, C., Godos, I. F., Múñoz Torre, R. & White Lance, S. The diatoms of the salt flats of the Bolivian Altiplano: Floristic singularities. Bull. R. Span. Soc. Nat. Hist. 105, 67–82 (2011).

    Google Scholar 

  • 105.

    Maidana, N. I. & Seeligmann, C. T. Diatoms (Bacillariophyceae) in high-altitude wetlands of Catamarca Province (Argentina). III. Bol. LA Soc. Argentina Bot. 50, 447–466 (2015).

    Article 

    Google Scholar 

  • 106.

    Woelfl, S., Caputo, L., García-Chicote, J. & de Los Ríos, P. Manuales Para la Bioindicación: Zooplancton Vol. 1 (Manuales Sociedad Chilena de Limnología, 2008).

    Google Scholar 

  • 107.

    De los Rios-Escalante, P. & Salgado, I. Artemia (Crustacea, Anostraca) in Chile: A review of basic and applied biology. Lat. Am. J. Aquat. Res. 40, 487–496 (2017).

    Article 

    Google Scholar 

  • 108.

    Araya, J. M. & Zúñiga, L. R. Taxonomic manual of the lacustrine zooplankton of Chile. Limnol. Bull. Univ. Austral Chile 8, 1–69 (1985).

    Google Scholar 

  • 109.

    Fernández, H. R. & Domínguez, E. Guide for the Determination of South American Benthic Arthropods, Entomotropica16(3), 219 (2001).

  • 110.

    Crespo, J. E. & Baessolo, L. A. Biogeografia y taxonomia del género Artemis (Crustacea, Anostraca) en Chile: una revisión. Hist. Nat. I(1), 17–21 (2002).

    Google Scholar 

  • 111.

    Villalobos, A., Ness, J. E., Gustafsson, C., Minshull, J. & Govindarajan, S. Gene Designer: A synthetic biology tool for constructing artificial DNA segments. BMC Bioinform. 7, 285 (2006).

    Article 
    CAS 

    Google Scholar 

  • 112.

    Palma, A. T., Schwarz, A. O. & Fariña, J. M. Experimental evidence of the tolerance to chlorate of the aquatic macrophyte Egeria densa in a Ramsar wetland in southern Chile. Wetlands 33, 129–140 (2013).

    Article 

    Google Scholar 

  • 113.

    Echeverría-Vega, A. et al. Watershed-induced limnological and microbial status in two oligotrophic Andean Lakes exposed to the same climatic scenario. Front. Microbiol. 9, 357 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 114.

    Lane, D. J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematic (eds Stackebrandt, E. & Goodfellow, M.) 115–175 (Wiley, 1991).

    Google Scholar 

  • 115.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 116.

    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 117.

    Clarke, K. R. & Gorley, R. N. Getting Started with PRIMER v7 20 (Plymouth Marine Laboratory, 2015).

    Google Scholar 

  • 118.

    Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2014).

    Article 
    CAS 

    Google Scholar 

  • 119.

    Clesceri, L. S., Greenberg, A. E. & Eaton, A. D. Standard Methods for the Examination of Water and Wastewater, 20th Edition. (APHA American Public Health Association, 1998).


  • Source: Ecology - nature.com

    Imagining the distant past — and finding keys to the future

    Salmon going viral