in

Emergent “core communities” of microbes, meiofauna and macrofauna at hydrothermal vents

  • 1.

    Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF, et al. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev Camb Philos Soc. 2013;88:15–30.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Cho BC, Azam F. Major role of bacteria in biogeochemical fluxes in the oceans interior. Nature. 1988;332:441–3.

    CAS 
    Article 

    Google Scholar 

  • 4.

    Rousk J, Bengtson P. Microbial regulation of global biogeochemical cycles. Front Microbiol. 2014;5:103.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Guilhon M, Montserrat F, Turra A. Recognition of ecosystem-based management principles in key documents of the seabed mining regime: implications and further recommendations. ICES J Marine Sci. 2020:fsaa229.

  • 6.

    Sherman K, Sissenwine M, Christensen V, Duda A, Hempel G, Ibe C, et al. A global movement toward an ecosystem approach to management of marine resources. Mar Ecol Prog Ser. 2005;300:275–9.

    Article 

    Google Scholar 

  • 7.

    Passarelli C, Olivier F, Paterson DM, Hubas C. Impacts of biogenic structures on benthic assemblages: microbes, meiofauna, macrofauna and related ecosystem functions. Mar Ecol Prog Ser. 2012;465:85–97.

    Article 

    Google Scholar 

  • 8.

    Baldrighi E, Aliani S, Conversi A, Lavaleye M, Borghini M, Manini E. From microbes to macrofauna: an integrated study of deep benthic communities and their response to environmental variables along the Malta Escarpment (Ionian Sea). Sci Mar. 2013;77:625–39.

    Article 

    Google Scholar 

  • 9.

    Foshtomi MY, Braeckman U, Derycke S, Sapp M, Van Gansbeke D, Sabbe K, et al. The link between microbial diversity and nitrogen cycling in marine sediments is modulated by macrofaunal bioturbation. PLoS ONE. 2015;10:e0130116.

  • 10.

    Hope JA, Paterson DM, Thrush SF. The role of microphytobenthos in soft-sediment ecological networks and their contribution to the delivery of multiple ecosystem services. J Ecology. 2020;108:815–30.

    Article 

    Google Scholar 

  • 11.

    Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Ocean plankton. Determinants of community structure in the global plankton interactome. Science. 2015;348:1262073.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 12.

    Blanchet FG, Cazelles K, Gravel D. Co-occurrence is not evidence of ecological interactions. Ecol Lett. 2020;23:1050–63.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Pearson K. Mathematical contributions to the theory of evolution—on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc R Soc Lond. 1897;60:489–98.

    Article 

    Google Scholar 

  • 14.

    Jackson DA. Compositional data in community ecology: the paradigm or peril of proportions? Ecology. 1997;78:929–40.

    Article 

    Google Scholar 

  • 15.

    Gloor GB, Reid G. Compositional analysis: a valid approach to analyze microbiome high-throughput sequencing data. Can J Microbiol. 2016;62:692–703.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Lovell D, Pawlowsky-Glahn V, Egozcue JJ, Marguerat S, Bahler J. Proportionality: a valid alternative to correlation for relative data. PLoS Comput Biol. 2015;11:e1004075.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 17.

    Sievert SM, Vetriani C. Chemoautotrophy at deep-sea vents: past, present, and future. Oceanography. 2012;25:218–33.

    Article 

    Google Scholar 

  • 18.

    Huber JA, Butterfield DA, Baross JA. Temporal changes in archaeal diversity and chemistry in a mid-ocean ridge subseafloor habitat. Appl Environ Microbiol. 2002;68:1585–94.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Karl DM, Wirsen CO, Jannasch HW. Deep-sea primary production at the Galapagos hydrothermal vents. Science. 1980;207:1345–7.

    CAS 
    Article 

    Google Scholar 

  • 20.

    Meyer JL, Akerman NH, Proskurowski G, Huber JA Microbiological characterization of post-eruption “snowblower” vents at Axial Seamount Juan de Fuca Ridge. Front Microbiol. 2013;4:153.

  • 21.

    Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev. 2011;75:361–422.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Dubilier N, Bergin C, Lott C. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol. 2008;6:725–40.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Yamanaka T et al. A Compilation of the Stable Isotopic Compositions of Carbon, Nitrogen, and Sulfur in Soft Body Parts of Animals Collected from Deep-Sea Hydrothermal Vent and Methane Seep Fields: Variations in Energy Source and Importance of Subsurface Microbial Processes in the Sediment-Hosted Systems. In: Ishibashi J, Okino K, Sunamura M, editors. Subseafloor Biosphere Linked to Hydrothermal Systems. Tokyo, Japan: Springer Open; 2015. p. 105–29.

  • 24.

    Bergquist D, Eckner J, Urcuyo I, Cordes E, Hourdez S, Macko S, Fisher C. Using stable isotopes and quantitative community characteristics to determine a local hydrothermal vent food web. Mar Ecol Prog Ser. 2007;330:49–65.

    Article 

    Google Scholar 

  • 25.

    Colaço A, Dehairs F, Desbruyères D. Nutritional relations of deep-sea hydrothermal fields at the Mid-Atlantic Ridge: a stable isotope approach. Deep-Sea Res Part I-Oceanogr Res Pap. 2002;49:395–412.

    Article 

    Google Scholar 

  • 26.

    Van Dover C, Fry B. Stable isotopic compositions of hydrothermal vent organisms. Mar Biol. 1989;102:257–63.

    Article 

    Google Scholar 

  • 27.

    Colaço A, Desbruyères D, Guezennec J. Polar lipid fatty acids as indicators of trophic associations in a deep-sea vent system community. Marine Ecology-an Evolut Perspect. 2007;28:15–24.

    Article 
    CAS 

    Google Scholar 

  • 28.

    Limen H, Stevens CJ, Bourass Z, Juniper SK. Trophic ecology of siphonostomatoid copepods at deep-sea hydrothermal vents in the northeast Pacific. Mar Ecol Prog Ser. 2008;359:161–70.

    Article 

    Google Scholar 

  • 29.

    Van Dover CL. Trophic relationships among invertebrates at the Kairei hydrothermal vent field (Central Indian Ridge). Mar Biol. 2002;141:761–72.

    Article 

    Google Scholar 

  • 30.

    Lamy T, Koenigs C, Holbrook SJ, Miller RJ, Stier AC, Reed DC. Foundation species promote community stability by increasing diversity in a giant kelp forest. Ecology. 2020;101:e02987.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Bruno JF, Bertness MD Habitat modification and facilitation in benthic marine communities. In: Bertness MD, Gaines SD, Hay ME, editors. Marine Community Ecology. Sunderland, MA: Sinauer Associates; 2001. p. 201–18.

  • 32.

    Dayton PK Toward an Understanding of Community Resilience and the Potential Effects of Enrichments to the Benthos at McMurdo Sound, Antarctica. Pages 81-95. In: Parker BC, editor. Proceedings of the Colloquium on Conservation Problems. Lawrence, Kansas, USA.: Allen Press; 1972.

  • 33.

    Tunnicliffe V, Cordes EE The tubeworm forests of hydrothermal vents and cold seeps. In: Rossi S, Bramanti L, editors. Perspectives on the Marine Animal Forests of the World Springer; 2020. p. 147–92.

  • 34.

    López-García P, Gaill F, Moreira D. Wide bacterial diversity associated with tubes of the vent worm Riftia pachyptila. Environ Microbiol. 2002;4:204–15.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Rincon-Tomas B, Francisco Javier González, Luis Somoza, Kathrin Sauter, Pedro Madureira, Teresa Medialdea et al. Siboglinidae Tubes as an Additional Niche for Microbial Communities in the Gulf of Cadiz-A Microscopical Appraisal. Microorganisms. 2020;8:367.

  • 36.

    Page A, Juniper SK, Olagnon M, Alain K, Desrosiers G, Querellou J, et al. Microbial diversity associated with a Paralvinella sulfincola tube and the adjacent substratum on an active deep-sea vent chimney. Geobiology. 2004;2:225–38.

    Article 

    Google Scholar 

  • 37.

    Govenar B Shaping Vent and Seep Communities: Habitat Provision and Modification by Foundation Species. In: Kiel S, editor. The vent and seep biota: aspects from microbes to ecosystems. Dordrecht: Springer; 2010. p. 403–32.

  • 38.

    Tunnicliffe V, Germain CS, Hilario A Phenotypic Variation and Fitness in a Metapopulation of Tubeworms (Ridgeia piscesae Jones) at Hydrothermal Vents. PLoS ONE. 2014;9:e110578.

  • 39.

    Sarrazin J, Juniper SK. Biological characteristics of a hydrothermal edifice mosaic community. Mar Ecol Prog Ser. 1999;185:1–19.

    Article 

    Google Scholar 

  • 40.

    Sarrazin J, Juniper SK, Massoth G, Legendre P. Physical and chemical factors influencing species distributions on hydrothermal sulfide edifices of the Juan de Fuca Ridge, northeast Pacific. Mar Ecol Prog Ser. 1999;190:89–112.

    CAS 
    Article 

    Google Scholar 

  • 41.

    Govenar BW, Bergquist DC, Urcuyo IA, Eckner JT, Fisher CR. Three Ridgeia piscesae assemblages from a single Juan de Fuca Ridge sulphide edifice: structurally different and functionally similar. Cah Biol Mar. 2002;43:247–52.

    Google Scholar 

  • 42.

    Forget NL, Juniper SK. Free-living bacterial communities associated with tubeworm (Ridgeia piscesae) aggregations in contrasting diffuse flow hydrothermal vent habitats at the Main Endeavour Field, Juan de Fuca Ridge. MicrobiologyOpen. 2013;2:259–75.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Danovaro R, Gambi C, Dell’Anno A, Corinaldesi C, Fraschetti S, Vanreusel A, et al. Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Curr Biol. 2008;18:1–8.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Dick GJ. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nature Rev Microbiol. 2019;17:271–83.

    CAS 

    Google Scholar 

  • 45.

    Lee W-K, Juniper SK, Perez M, Ju S-J, Kim S-J Diversity and characterization of bacterial communities of five co-occurring species at a hydrothermal vent on the Tonga Arc. Ecol Evol. 2021;11:4481–93.

  • 46.

    Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA. 2006;103:12115–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Eren AM, Vineis JH, Morrison HG, Sogin ML. A filtering method to generate high quality short reads using illumina paired-end technology. PLoS One. 2013;8:e66643.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 48.

    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Caron DA, Countway PD, Savai P, Gast RJ, Schnetzer A, Moorthi SD, et al. Defining DNA-based operational taxonomic units for microbial-eukaryote ecology. Appl Environ Microbiol. 2009;75:5797–808.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(Database issue):D590–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:D597–604.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Quinn TP, Ionas Erb, Greg Gloor, Cedric Notredame, Mark F Richardson, Tamsyn M Crowley et al. A field guide for the compositional analysis of any-omics data. Gigascience. 2019;8:giz107.

  • 53.

    Martín-Fernández JA, Palarea-Albaladejo J, Olea RA Dealing with Zeros. In: Pawlowsky‐Glahn V, Buccianti A, editors. Compositional Data Analysis2011. p. 43-58.

  • 54.

    Palarea-Albaladejo J, Martin-Fernandez JA. zCompositions – R Package for multivariate imputation of left-censored data under a compositional approach. Chemometr Intell Lab. 2015;143:85–96.

    CAS 
    Article 

    Google Scholar 

  • 55.

    Aitchison J The statistical analysis of compositional data. London: Chapman & Hall; 1986. p. 416.

  • 56.

    Aitchison J, Barcelo-Vidal C, Martin-Fernandez JA, Pawlowsky-Glahn V. Logratio analysis and compositional distance. Math Geol. 2000;32:271–5.

    Article 

    Google Scholar 

  • 57.

    Comas-Cufí M coda.base: A Basic Set of Functions for Compositional Data Analysis. R package version 0.2.1 2019 [Available from: https://CRAN.R-project.org/package=coda.base.

  • 58.

    Oksanen J et al. vegan: Community Ecology Package. R package version 2.2-1. 2015 [Available from: http://CRAN.R-project.org/package=vegan.

  • 59.

    Fernandes AD, Macklaim JM, Linn TG, Reid G, Gloor GB. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS One. 2013;8:e67019.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Quinn TP, Richardson MF, Lovell D, Crowley TM. propr: an R-package for identifying proportionally abundant features using compositional data analysis. Sci Rep. 2017;7:16252.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 61.

    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research. 2003;13:2498–504.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Huber JA, Butterfield DA, Baross JA. Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. FEMS Microbiol Ecol. 2003;43:393–409.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Akerman NH, Butterfield DA, Huber JA Phylogenetic diversity and functional gene patterns of sulfur-oxidizing subseafloor Epsilonproteobacteria in diffuse hydrothermal vent fluids. Front Microbiol. 2013;4:185.

  • 64.

    Tsurumi M, Tunnicliffe V. Tubeworm-associated communities at hydrothermal vents on the Juan de Fuca Ridge, northeast Pacific. Deep-Sea Res Part I-Oceanogr Res Pap. 2003;50:611–29.

    Article 

    Google Scholar 

  • 65.

    Butterfield DA, Massoth GJ, McDuff RE, Lupton JE, Lilley MD. Geochemistry of hydrothermal fluids from Axial Seamount Hydrothermal Emissions Study vent field, Juan de Fuca Ridge: subseafloor boiling and subsequent fluid-rock interaction. J Geophys Res. 1990;95:12895–921.

    Article 

    Google Scholar 

  • 66.

    Johnson KS, Beehler CL, Sakamotoarnold CM, Childress JJ. insitu measurements of chemical-distributions in a deep-sea hydrothermal vent field. Science. 1986;231:1139–41.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Du Preez C, Fisher CP Long-Term Stability of back-Arc basin hydrothermal vents. Front Mar Sci. 2018;5:54.

  • 68.

    Urcuyo IA, Bergquist DC, MacDonald IR, VanHorn M, Fisher CR. Growth and longevity of the tubeworm Ridgeia piscesae in the variable diffuse flow habitats of the Juan de Fuca Ridge. Mar Ecol Prog Ser. 2007;344:143–57.

    Article 

    Google Scholar 

  • 69.

    Perner M, Bach W, Hentscher M, Koschinsky A, Garbe-Schönberg D, Streit WR, et al. Short-term microbial and physico-chemical variability in low-temperature hydrothermal fluids near 5 degrees S on the Mid-Atlantic Ridge. Environ Microbiol. 2009;11:2526–41.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Orcutt BN, Bradley JA, Brazelton WJ, Estes ER, Goordial JM, Huber JA, et al. Impacts of deep-sea mining on microbial ecosystem services. Limnology Oceanogr. 2020;65:1489–510.

    CAS 
    Article 

    Google Scholar 

  • 71.

    Gollner S, Ivanenko VN, Arbizu PM, Bright M. Advances in taxonomy, ecology, and biogeography of Dirivultidae (copepoda) associated with chemosynthetic environments in the deep sea. PLoS One. 2010;5:e9801.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 72.

    Kalanetra KM, Nelson DC. Vacuolate-attached filaments: highly productive Ridgeia piscesae epibionts at the Juan de Fuca hydrothermal vents. Mar Biol. 2010;157:791–800.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 73.

    Girguis PR, Lee RW. Thermal preference and tolerance of alvinellids. Science. 2006;312:231.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 74.

    Burgaud G, Le Calvez T, Arzur D, Vandenkoornhuyse P, Barbier G. Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol. 2009;11:1588–600.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 75.

    Murdock SA, Juniper SK. Hydrothermal vent protistan distribution along the Mariana arc suggests vent endemics may be rare and novel. Environ Microbiol. 2019;21:3796–815.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Meier DV, Bach W, Girguis PR, Gruber-Vodicka HR, Reeves EP, Richter M, et al. Heterotrophic Proteobacteria in the vicinity of diffuse hydrothermal venting. Environ Microbiol. 2016;18:4348–68.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 77.

    Stokke R, Dahle H, Roalkvam I, Wissuwa J, Daae FL, Tooming-Klunderud A, et al. Functional interactions among filamentous Epsilonproteobacteria and Bacteroidetes in a deep-sea hydrothermal vent biofilm. Environ Microbiol. 2015;17:4063–77.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 78.

    Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol. 2019;66:4–119.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 79.

    Brown MW, Sharpe SC, Silberman JD, Heiss AA, Lang BF, Simpson AG, et al. Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads. Proc Biol Sci. 2013;280:20131755.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Hamann E, Gruber-Vodicka H, Kleiner M, Tegetmeyer HE, Riedel D, Littmann S, et al. Environmental Breviatea harbour mutualistic Arcobacter epibionts. Nature. 2016;534:254–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Gollner S, Riemer B, Arbizu PM, Le Bris N, Bright M. Diversity of meiofauna from the 9 degrees 50’ N East Pacific rise across a gradient of hydrothermal fluid emissions. PLoS ONE. 2010;5:e12321.

  • 82.

    Sarrazin J, Legendre P, de Busserolles F, Fabri MC, Guilini K, Ivanenko VN, et al. Biodiversity patterns, environmental drivers and indicator species on a high-temperature hydrothermal edifice, Mid-Atlantic Ridge. Deep-Sea Res Part Ii-Topical Stud Oceanogr. 2015;121:177–92.

    CAS 
    Article 

    Google Scholar 

  • 83.

    Bates AE, Harmer TL, Roeselers G, Cavanaugh CM. Phylogenetic characterization of episymbiotic bacteria hosted by a hydrothermal vent limpet (lepetodrilidae, vetigastropoda). Biol Bull-US. 2011;220:118–27.

    Article 

    Google Scholar 

  • 84.

    Schratzberger M, Ingels J. Meiofauna matters: the roles of meiofauna in benthic ecosystems. J Exp Mar Biol Ecol. 2018;502:12–25.

    Article 

    Google Scholar 

  • 85.

    Cronin-O’Reilly S, Joe D Taylor, Ian Jermyn, A Louise Allcock, Michael Cunliffe, Mark P Johnson et al. Limited congruence exhibited across microbial, meiofaunal and macrofaunal benthic assemblages in a heterogeneous coastal environment. Sci Rep-UK. 2018;8:15500.

  • 86.

    Reimann F, Schrage M. The mucus-trap hypothesis on feeding of aquatic nematodes and implications for biodegradation and sediment texture. Oecologia. 1978;34:75–88.

    Article 

    Google Scholar 

  • 87.

    Léveillé RJ, Levesque C, Juniper SK Biotic interactions and feedback processes in deep-sea hydrothermal vent ecosystems. In: Kristensen E, Haese RR, Kostka JE, editors. Interactions between macro- and microorganisms in marine sediments. Washington, DC: American Geophysical Union; 2005. p. 299–321.

  • 88.

    Ingels J, Ann Vanreusel, Ellen Pape, Francesca Pasotti, Lara Macheriotou, Pedro Martínez Arbizu et al. Ecological variables for deep-ocean monitoring must include microbiota and meiofauna for effective conservation. Nat Ecology Evolut. 2020: https://doi.org/10.1038/s41559-020-01335-6.

  • 89.

    Thompson KF, Miller KA, Currie D, Johnston P, Santillo D. Seabed mining and approaches to governance of the deep seabed. Front Mar Sci. 2018;5:480.


  • Source: Ecology - nature.com

    Observed increasing water constraint on vegetation growth over the last three decades

    Rapid evolution of bacterial mutualism in the plant rhizosphere