in

Emerging satellite observations for diurnal cycling of ecosystem processes

  • 1.

    Hennessey, T. L., Freeden, A. L. & Field, C. B. Environmental effects on circadian rhythms in photosynthesis and stomatal opening. Planta 189, 369–376 (1993).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Steed, G., Ramirez, D. C., Hannah, M. A. & Webb, A. A. R. Chronoculture, harnessing the circadian clock to improve crop yield and sustainability. Science 372, eabc9141 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Zhao, T. B. & Dai, A. G. The magnitude and causes of global drought changes in the twenty-first century under a low–moderate emissions scenario. J. Clim. 28, 4490–4512 (2015).

    Article 

    Google Scholar 

  • 4.

    Perkins-Kirkpatrick, S. E. & Gibson, P. B. Changes in regional heatwave characteristics as a function of increasing global temperature. Sci. Rep. 7, 12256 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Bates, L. M. & Hall, A. E. Stomatal closure with soil-water depletion not associated with changes in bulk leaf water status. Oecologia 50, 62–65 (1981).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Roessler, P. G. & Monson, R. K. Midday depression in net photosynthesis and stomatal conductance in Yucca-Glauca—relative contributions of leaf temperature and leaf-to-air water-vapor concentration difference. Oecologia 67, 380–387 (1985).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Tenhunen J. D., Pearcy R. W. & Lange O. L. in Stomatal Function (eds Zeiger, E. et al.) Ch. 15 (Stanford Univ. Press, 1987).

  • 8.

    Tucci, M. L. S., Erismann, N. M., Machado, E. C. & Ribeiro, R. V. Diurnal and seasonal variation in photosynthesis of peach palms grown under subtropical conditions. Photosynthetica 48, 421–429 (2010).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Kosugi, Y. & Matsuo, N. Seasonal fluctuations and temperature dependence of leaf gas exchange parameters of co-occurring evergreen and deciduous trees in a temperate broad-leaved forest. Tree Physiol. 26, 1173–1184 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Koch, G. W., Amthor, J. S. & Goulden, M. L. Diurnal patterns of leaf photosynthesis, conductance and water potential at the top of a lowland rain-forest canopy in Cameroon—measurements from the Radeau-Des-Cimes. Tree Physiol. 14, 347–360 (1994).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Olioso, A., Carlson, T. N. & Brisson, N. Simulation of diurnal transpiration and photosynthesis of a water stressed soybean crop. Agric. For. Meteorol. 81, 41–59 (1996).

    Article 

    Google Scholar 

  • 12.

    Cowan, I. R. & Farquhar, G. D. Stomatal function in relation to leaf metabolism and environment: stomatal function in the regulation of gas exchange. Symposia Soc. Exp. Biol. 31, 471–505 (1977).

    CAS 

    Google Scholar 

  • 13.

    Bollig, C. & Feller, U. Impacts of drought stress on water relations and carbon assimilation in grassland species at different altitudes. Agric. Ecosyst. Environ. 188, 212–220 (2014).

    Article 

    Google Scholar 

  • 14.

    Koyama, K. & Takemoto, S. Morning reduction of photosynthetic capacity before midday depression. Sci. Rep. 4, 4389 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 15.

    Nelson, J. A., Carvalhais, N., Migliavacca, M., Reichstein, M. & Jung, M. Water-stress-induced breakdown of carbon–water relations: indicators from diurnal FLUXNET patterns. Biogeosciences 15, 2433–2447 (2018).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Xu, H., Xiao, J. F. & Zhang, Z. Q. Heatwave effects on gross primary production of northern mid-latitude ecosystems. Environ. Res. Lett. 15, 074027 (2020).

    Article 

    Google Scholar 

  • 17.

    Baldocchi, D. et al. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 82, 2415–2434 (2001).

    Article 

    Google Scholar 

  • 18.

    Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).

    Article 

    Google Scholar 

  • 19.

    Xiao, J. F. et al. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data. Remote Sens. Environ. 114, 576–591 (2010).

    Article 

    Google Scholar 

  • 20.

    Anderson, M. C., Allen, R. G., Morse, A. & Kustas, W. P. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens. Environ. 122, 50–65 (2012).

    Article 

    Google Scholar 

  • 21.

    Sun, Y. et al. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 358, eaam5747 (2017).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 22.

    Mu, Q., Heinsch, F. A., Zhao, M. & Running, S. W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 111, 519–536 (2007).

    Article 

    Google Scholar 

  • 23.

    Fisher, J. B. et al. ECOSTRESS: NASA’s next generation mission to measure evapotranspiration from the International Space Station. Water Resour. Res. 56, 1–20 (2020).

    Article 

    Google Scholar 

  • 24.

    Hook, S. J. et al. In-flight validation of ECOSTRESS, Landsat 7 and 8 thermal infrared spectral channels using the Lake Tahoe CA/NV and Salton Sea CA automated validation sites. IEEE Trans. Geosci. Remote Sens. 58, 1294–1302 (2019).

    Article 

    Google Scholar 

  • 25.

    Hulley, G., Shivers, S., Wetherley, E. & Cudd, R. New ECOSTRESS and MODIS land surface temperature data reveal fine-scale heat vulnerability in cities: a case study for Los Angeles County, California. Remote Sens. 11, 2136 (2019).

    Article 

    Google Scholar 

  • 26.

    Anderson, M. C. et al. Interoperability of ECOSTRESS and Landsat for mapping evapotranspiration time series at sub-field scales. Remote Sens. Environ. 252, 112189 (2021).

    Article 

    Google Scholar 

  • 27.

    Anderson, M. C. et al. An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with US drought monitor classifications. J. Hydrometeorol. 14, 1035–1056 (2013).

    Article 

    Google Scholar 

  • 28.

    Li, X., Xiao, J., Fisher, J. B. & Baldocchi, D. D. ECOSTRESS estimates gross primary production with fine spatial resolution for different times of day from the International Space Station. Remote Sens. Environ. 258, 112360 (2021).

    Article 

    Google Scholar 

  • 29.

    Hulley, G. C. et al. Validation and quality assessment of the ECOSTRESS level-2 land surface temperature and emissivity product. IEEE Trans. Geosci. Remote Sens. https://doi.org/10.1109/TGRS.2021.3079879 (2021).

  • 30.

    Aragon, B., Houborg, R., Tu, K., Fisher, J. B. & McCabe, M. CubeSats enable high spatiotemporal retrievals of crop-water use for precision agriculture. Remote Sens. 10, 1867 (2018).

    Article 

    Google Scholar 

  • 31.

    Fisher, J. B. et al. The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 53, 2618–2626 (2017).

    Article 

    Google Scholar 

  • 32.

    Turner, N. C., Schulze, E.-D. & Gollan, T. The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content. Oecologia 65, 348–355 (1985).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Moore, G. W. & Heilman, J. L. Proposed principles governing how vegetation changes affect transpiration. Ecohydrology 4, 351–358 (2011).

    Article 

    Google Scholar 

  • 34.

    Hulley, G. C. & Hook, S. J. Generating consistent land surface temperature and emissivity products between ASTER and MODIS data for earth science research. IEEE Trans. Geosci. Remote Sens. 49, 1304–1315 (2011).

    Article 

    Google Scholar 

  • 35.

    Fisher, J. B., Whittaker, R. H. & Malhi, Y. ET Come Home: a critical evaluation of the use of evapotranspiration in geographical ecology. Glob. Ecol. Biogeogr. 20, 1–18 (2011).

    Article 

    Google Scholar 

  • 36.

    Talsma, C. J. et al. Partitioning of evapotranspiration in remote sensing-based models. Agric. For. Meteorol. 260, 131–143 (2018).

    Article 

    Google Scholar 

  • 37.

    Otkin, J. A. et al. Examining rapid onset drought development using the thermal infrared-based evaporative stress index. J. Hydrometeorol. 14, 1057–1074 (2013).

    Article 

    Google Scholar 

  • 38.

    Stavros, E. N. et al. ISS observations offer insights into plant function. Nat. Ecol. Evolution 1, 0194 (2017).

    Article 

    Google Scholar 

  • 39.

    Taylor, T. E. et al. OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals. Remote Sens. Environ. 251, 112032 (2020).

    Article 

    Google Scholar 

  • 40.

    Frankenberg, C. et al. The Orbiting Carbon Observatory (OCO-2): spectrometer performance evaluation using pre-launch direct sun measurements. Atmos. Meas. Tech. 8, 301–313 (2015).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Bilger, W., Schreiber, U. & Bock, M. Determination of the quantum efficiency of photosystem-II and of nonphotochemical quenching of chlorophyll fluorescence in the field. Oecologia 102, 425–432 (1995).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Maguire, A. J. et al. On the functional relationship between fluorescence and photochemical yields in complex evergreen needleleaf canopies. Geophys. Res. Lett. 47, e2020GL087858 (2020).

    Article 

    Google Scholar 

  • 43.

    Marrs, J. K. et al. Solar-induced fluorescence does not track photosynthetic carbon assimilation following induced stomatal closure. Geophys. Res. Lett. 47, e2020GL087956 (2020).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Li, X. et al. Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: first global analysis based on OCO-2 and flux tower observations. Glob. Change Biol. 24, 3990–4008 (2018).

    Article 

    Google Scholar 

  • 45.

    Frankenberg, C. et al. New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 38, L17706 (2011).

    Article 
    CAS 

    Google Scholar 

  • 46.

    Li, X. & Xiao, J. F. Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: a global, fine-resolution dataset of gross primary production derived from OCO-2. Remote Sens. 11, 2563 (2019).

    Article 

    Google Scholar 

  • 47.

    Liu, J. J. et al. Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Nino. Science 358, eaam5690 (2017).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 48.

    Parazoo, N. C. et al. Towards a harmonized long-term spaceborne record of far-red solar-induced fluorescence. J. Geophys. Res. 124, 2518–2539 (2019).

    Article 

    Google Scholar 

  • 49.

    He, L. Y. et al. Tracking seasonal and interannual variability in photosynthetic downregulation in response to water stress at a temperate deciduous forest. J. Geophys. Res. 125, e2018JG005002 (2020).

    Google Scholar 

  • 50.

    Lin, C. J. et al. Evaluation and mechanism exploration of the diurnal hysteresis of ecosystem fluxes. Agric. For. Meteorol. 278, 107642 (2019).

    Article 

    Google Scholar 

  • 51.

    Magney, T. S. et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl Acad. Sci. USA 116, 11640–11645 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Yang, X. et al. FluoSpec 2—an automated field spectroscopy system to monitor canopy solar-induced fluorescence. Sensors (Basel) 18, 2063 (2018).

    Article 
    CAS 

    Google Scholar 

  • 53.

    Miura, T., Nagai, S., Takeuchi, M., Ichii, K. & Yoshioka, H. Improved characterisation of vegetation and land surface seasonal dynamics in central Japan with Himawari-8 hypertemporal data. Sci. Rep. 9, 15692 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 54.

    Bessho, K. et al. An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteorological Soc. Jpn 94, 151–183 (2016).

    Article 

    Google Scholar 

  • 55.

    Schmit, T. J. et al. A closer look at the ABI on the GOES-R series. Bull. Am. Meteorol. Soc. 98, 681–698 (2017).

    Article 

    Google Scholar 

  • 56.

    Oh, S. M., Borde, R., Carranza, M. & Shin, I. C. Development and intercomparison study of an atmospheric motion vector retrieval algorithm for GEO-KOMPSAT-2A. Remote Sens. 11, 2054 (2019).

    Article 

    Google Scholar 

  • 57.

    Yang, J., Zhang, Z. Q., Wei, C. Y., Lu, F. & Guo, Q. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull. Am. Meteorol. Soc. 98, 1637–1658 (2017).

    Article 

    Google Scholar 

  • 58.

    Ouaknine, J. et al. The FCI on Board MTG: optical design and performances. In International Conference on Space Optics—ICSO 2014 (eds Sodnik, Z. et al.) 1056323 (SPIE, 2014).

  • 59.

    Wang, W. et al. An introduction to the Geostationary-NASA Earth Exchange (GeoNEX) products: 1. Top-of-atmosphere reflectance and brightness temperature. Remote Sens. 12, 1267 (2020).

    Article 

    Google Scholar 

  • 60.

    Yamamoto, Y., Ishikawa, H., Oku, Y. & Hu, Z. Y. An algorithm for land surface temperature retrieval using three thermal infrared bands of Himawari-8. J. Meteorological Soc. Jpn. 96B, 59–76 (2018).

    Article 

    Google Scholar 

  • 61.

    Yu, Y. & Yu, P. in The GOES-R Series. A New Generation of Geostationary Environmental Satellites (eds Goodman, S. J. et al.) Ch. 12 (2020).

  • 62.

    Takenaka, H. et al. Estimation of solar radiation using a neural network based on radiative transfer. J. Geophys. Res. 116, D08215 (2011).

    Google Scholar 

  • 63.

    Hashimoto, H. et al. Hourly GPP estimation in Australia using Himawari-8 AHI products. In IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium 4513–4515 (IEEE, 2020).

  • 64.

    Yan, K. et al. Evaluation of MODIS LAI/FPAR product collection 6. Part 1: consistency and improvements. Remote Sens. 8, 359 (2016).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Moore, B. et al. The potential of the Geostationary Carbon Cycle Observatory (GeoCarb) to provide multi-scale constraints on the carbon cycle in the Americas. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2018.00109 (2018).

  • 66.

    Zoogman, P. et al. Tropospheric emissions: monitoring of pollution (TEMPO). J. Quant. Spectrosc. Radiat. Transf. 186, 17–39 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Courrèges-Lacoste, G. B. et al. Knowing what we Breathe: Sentinel 4: a Geostationary Imaging UVN Spectrometer for Air Quality Monitoring. In International Conference on Space Optics—ICSO 2016 (eds Karafolas, N. et al.) 105621J (SPIE, 2017).

  • 68.

    Wekerle, T., Pessoa, J. B., da Costa, L. & Trabasso, L. G. Status and trends of smallsats and their launch vehiclesan up-to-date review. J. Aerosp. Technol. Manag. 9, 269–286 (2017).

    Article 

    Google Scholar 

  • 69.

    Ryswyk, M. V. Planet announces 50 cm SkySat imagery, tasking dashboard and up to 12× revisit. Planet (9 June 2020); https://www.planet.com/pulse/tasking-dashboard-50cm-12x-revisit-announcement/

  • 70.

    Blackwell, W. J. et al. An overview of the TROPICS NASA Earth Venture mission. Q. J. R. Meteorol. Soc. 144, 16–26 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Gao, F., Masek, J., Schwaller, M. & Hall, F. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 44, 2207–2218 (2006).

    Article 

    Google Scholar 

  • 72.

    Franco, A. C. & Luttge, U. Midday depression in savanna trees: coordinated adjustments in photochemical efficiency, photorespiration, CO2 assimilation and water use efficiency. Oecologia 131, 356–365 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 73.

    Keller, M., Schimel, D. S., Hargrove, W. W. & Hoffman, F. M. A continental strategy for the National Ecological Observatory Network. Front. Ecol. Environ. 6, 282–284 (2008).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Beyond coronavirus: the virus discoveries transforming biology

    Genetic and phylogenetic analysis of dissimilatory iodate-reducing bacteria identifies potential niches across the world’s oceans