in

Empirical leucine-to-carbon conversion factors in north-eastern Atlantic waters (50–2000 m) shaped by bacterial community composition and optical signature of DOM

  • 1.

    Yamada, N., Fukuda, H., Ogawa, H., Saito, H. & Suzumura, M. Heterotrophic bacterial production and extracellular enzymatic activity in sinking particulate matter in the western North Pacific Ocean. Front. Microbiol. 3, 379. https://doi.org/10.3389/fmicb.2012.00379 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    del Giorgio, P., Cole, J. & Cimbleris, A. Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature 385, 148–151 (1997).

    ADS 

    Google Scholar 

  • 3.

    Teira, E. et al. Sample dilution and bacterial community composition influence empirical leucine-to-carbon conversion factors in surface waters of the world’s oceans. Appl. Environ. Microbiol. 81, 8224–8232 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Dobal-Amador, V. et al. Vertical stratification of bacterial communities driven by multiple environmental factors in the waters (0–5000 m) off the Galician coast (NW Iberian margin). Deep-Sea Res. I(114), 1–11 (2016).

    Google Scholar 

  • 5.

    Kirchman, D., Ducklow, H. W. & Mitchell, R. Estimates of bacterial growth from changes in uptake rates and biomass. Appl. Environ. Microbiol. 44, 1296–1307 (1982).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Simon, M. & Azam, F. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51, 201–213 (1989).

    ADS 
    CAS 

    Google Scholar 

  • 7.

    Ducklow, H. Bacterial production and biomass in the ocean. In Microbial Ecology of the Oceans (ed. Kirchman, D.) 85–120 (Wiley, 2000).

    Google Scholar 

  • 8.

    Varela, M. M., Bode, A., Morán, X. A. G. & Valencia, J. Dissolved organic nitrogen (DON) release and bacterial activity in the upper layers of the Atlantic Ocean. Microb. Ecol. 51, 487–500 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Calvo-Díaz, A. & Morán, X. A. G. Empirical leucine-to-carbon conversion factors for estimating heterotrophic bacterial production: Seasonality and predictability in a temperate coastal ecosystem. Appl. Environ. Microbiol. 75, 3216–3221 (2009).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Alonso-Sáez, L., Pinhassi, J., Pernthaler, J. & Gasol, J. M. Leucine-to-carbon empirical conversion factor experiments: Does bacterial community structure have an influence?. Environ. Microbiol. 12, 2988–2997 (2010).

    PubMed 

    Google Scholar 

  • 11.

    Gasol, J. M. et al. Mesopelagic prokaryotic bulk and single-cell heterotrophic activity and community composition in the NW Africa-Canary Islands coastal-transition zone. Prog. Oceanogr. 83, 189–196 (2009).

    ADS 

    Google Scholar 

  • 12.

    Baltar, F., Aristegui, J., Gasol, J. M. & Herndl, G. Prokaryotic carbon utilization in the dark ocean: Growth efficiency, leucine-to-carbon conversion factors, and their relation. Aquat. Microb. Ecol. 60, 227–232 (2010).

    Google Scholar 

  • 13.

    Varela, M. M., Rodríguez-Ramos, T., Guerrero-Feijóo, E. & Nieto-Cid, M. Changes in activity and community composition shape bacterial responses to size-fractionated marine DOM. Front. Microbiol. 11, 586148. https://doi.org/10.3389/fmicb.2020.586148 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Sarmento, H., Morana, C. & Gasol, J. M. Bacterioplankton niche partitioning in the use of phytoplankton-derived dissolved organic carbon: Quantity is more important than quality. ISME J. 10, 2582–2592 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Guerrero-Feijóo, E. et al. Optical properties of dissolved organic matter relate to different depth-specific patterns of archaeal and bacterial community structure in the North Atlantic Ocean. FEMS Microbiol. Ecol. 93, 1–14 (2017).

    Google Scholar 

  • 16.

    Helms, J. R. et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 51, 2170–2180 (2008).

    Google Scholar 

  • 17.

    Stedmon, C. A. & Nelson, N. B. The optical properties of DOM in the ocean. In Biogeochemistry of Marine Dissolved Organic Matter (eds Hansell, D. A. & Carlson, C. A.) 481–508 (Academic Press, 2015).

    Google Scholar 

  • 18.

    Nieto-Cid, M., Álvarez-Salgado, X. A. & Pérez, F. F. Microbial and photochemical reactivity of fluorescent dissolved organic matter in a coastal upwelling system. Limnol. Oceanogr. 51, 1391–1400 (2006).

    ADS 
    CAS 

    Google Scholar 

  • 19.

    Rodríguez-Ramos, T., Nieto-Cid, M., Auladell, A., Guerrero-Feijóo, E. & Varela, M. M. Vertical niche partitioning of archaea and bacteria linked to shifts in dissolved organic matter quality and hydrography in North Atlantic waters. Front. Mar. Sci. 8, 673171. https://doi.org/10.3389/fmars.2021.673171 (2021).

    Article 

    Google Scholar 

  • 20.

    Bode, A., Álvarez-Osorio, M. T., Cabanas, J. M., Miranda, A. & Varela, M. Recent trends in plankton and upwelling intensity off Galicia (NW Spain). Prog. Oceanogr. 83, 342–350 (2009).

    ADS 

    Google Scholar 

  • 21.

    Teira, E. et al. Plankton carbon budget in a coastal wind-driven upwelling station off A Coruña (NW Iberian Peninsula). Mar. Ecol. Prog. Ser. 265, 31–43 (2003).

    ADS 
    CAS 

    Google Scholar 

  • 22.

    Ruiz-Villarreal, M. et al. Oceanographic conditions in North and Northwest Iberia and their influence on the Prestige oil spill. Mar. Pollut. Bull. 53, 220–238 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Lavin, A. et al. The Bay of Biscay: The encountering of the ocean and the shelf. In The Sea, Volume 14B: The Global Coastal Ocean (eds Robinson, A. & Brink, K.) 993–1001 (Harvard University Press, 2006).

    Google Scholar 

  • 24.

    Pedrós-Alió, C., Calderón-Paz, J. I., Guixa-Boixereu, N., Estrada, M. & Gasol, J. M. Bacterioplankton and phytoplankton biomass and production during summer stratification in the northwestern Mediterranean Sea. Deep-Sea Res. I(46), 985–1019 (1999).

    Google Scholar 

  • 25.

    Barbosa, A. B. et al. Short-term variability of heterotrophic bacterioplankton during upwelling off the NW Iberian margin. Prog. Oceanogr. 51, 339–359 (2001).

    ADS 

    Google Scholar 

  • 26.

    Morán, X. A., Gasol, J. M., Pedrós-Alió, C. & Estrada, M. Partitioning of phytoplankton organic carbon production and bacterial production along a coastal-offshore gradient in the NE Atlantic during different hydrographic regimes. Aquat. Microb. Ecol. 29, 239–252 (2002).

    Google Scholar 

  • 27.

    Martínez-García, S. et al. Differential responses of phytoplankton and heterotrophic bacteria to organic and inorganic nutrient additions in coastal waters off the NW Iberian Peninsula. Mar. Ecol. Prog. Ser. 416, 17–33 (2010).

    ADS 

    Google Scholar 

  • 28.

    Li, X., Xu, J., Shi, Z., Li, Q. & Li, R. Variability in the empirical leucine-to-carbon conversion factors along an environmental gradient. Acta Oceanol. Sin. 37, 77–82 (2018).

    Google Scholar 

  • 29.

    Doval, M. D., Nogueira, E. & Pérez, F. F. Spatio-temporal variability of the thermohaline and biogeochemical properties and dissolved organic carbon in a coastal embayment affected by upwelling: The Ría de Vigo (NW Spain). J. Mar. Sys. 14, 135–150 (1998).

    Google Scholar 

  • 30.

    Valencia, J. et al. Variations in planktonic bacterial biomass and production, and phytoplankton blooms off A Coruña (NW Spain). Sci. Mar. 67, 143–157 (2003).

    Google Scholar 

  • 31.

    Bode, A., Álvarez-Osorio, M. T. & Varela, M. Phytoplankton and macrophyte contributions to littoral food webs in the Galician upwelling estimated from stable isotopes. Mar. Ecol. Prog. Ser. 318, 89–102 (2006).

    ADS 
    CAS 

    Google Scholar 

  • 32.

    Bode, A., Varela, M., Canle, M. & González, N. Dissolved and particulate organic nitrogen in shelf waters of northern Spain during spring. Mar. Ecol. Prog. Ser. 214, 43–54 (2001).

    ADS 
    CAS 

    Google Scholar 

  • 33.

    Lønborg, C. & Álvarez-Salgado, X. A. Tracing dissolved organic matter cycling in the eastern boundary of the temperate North Atlantic using absorption and fluorescence spectroscopy. Deep Res. Part I 85, 35–46 (2014).

    Google Scholar 

  • 34.

    Lønborg, C., Yokokawa, T., Herndl, G. & Álvarez-Salgado, X. A. Production and degradation of fluorescent dissolved organic matter in surface waters of the eastern North Atlantic Ocean. Deep Res. Part I(96), 28–37 (2015).

    Google Scholar 

  • 35.

    Lønborg, C., Davidson, K., Álvarez-Salgado, X. A. & Miller, A. E. J. Bioavailability 904 and bacterial degradation rates of dissolved organic matter in a temperate coastal area 905 during an annual cycle. Mar. Chem. 113, 219–226 (2009).

    Google Scholar 

  • 36.

    Teira, E. et al. Plankton carbon budget in a coastal wind-driven upwelling station off A Coruna (NW Iberian Peninsula). Mar. Ecol. Prog. Ser. 265, 31–43 (2003).

    ADS 
    CAS 

    Google Scholar 

  • 37.

    Álvarez-Salgado, X. A., Arístegui, J., Barton, E. D. & Hansell, D. A. Contribution of upwelling filaments to offshore carbon export in the subtropical Northeast Atlantic Ocean. Limnol. Oceanogr. 52, 1287–1292 (2007).

    ADS 

    Google Scholar 

  • 38.

    Álvarez-Salgado, X. A. et al. Off-shelf fluxes of labile materials by an upwelling filament in the NW Iberian Upwelling System. Prog. Oceanogr. 51, 321–337 (2001).

    ADS 

    Google Scholar 

  • 39.

    del Giorgio, P. A. et al. Coherent patterns in bacterial growth, growth efficiency, and leucine metabolism along a northeastern Pacific inshore-offshore transect. Limnol. Oceanogr. 56, 1–16 (2011).

    ADS 

    Google Scholar 

  • 40.

    Aristegui, J., Gasol, J. M., Duarte, C. M. & Herndl, G. J. Microbial oceanography of the dark ocean’s pelagic realm. Limnol. Oceanogr. 54, 1501–1529 (2009).

    ADS 
    CAS 

    Google Scholar 

  • 41.

    Herndl, G. J. & Reinthaler, T. Microbial control of the dark end of the biological pump. Nat. Geosci. 6, 718–724 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Landry, Z., Swan, B. K., Herndl, G. J., Stepanauskas, R. & Giovannoni, S. J. SAR202 genomes from the dark ocean predict pathways for the oxidation of recalcitrant dissolved organic matter. MBio 8, e00413-17. https://doi.org/10.1128/mBio.00413-17 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Catalá, T. et al. Dissolved Organic Matter (DOM) in the open Mediterranean Sea. I. Basin–wide distribution and drivers of chromophoric DOM. Prog. Oceanogr. 165, 35–51 (2018).

    ADS 

    Google Scholar 

  • 44.

    Bjørnsen, P. K. & Kuparinen, J. Determination of bacterioplankton biomass, net production and growth efficiency in the Southern Ocean. Mar. Ecol. Prog. Ser. 71, 185–194 (1991).

    ADS 

    Google Scholar 

  • 45.

    Weinbauer, M. G. et al. Synergistic and antagonistic effects of viral lysis and protistan grazing on bacterial biomass, production and diversity. Environ. Microbiol. 9(3), 777–788 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Evans, C. et al. Shift from carbon flow through the microbial loop to the viral shunt in coastal Antarctic waters during austral summer. Microorganisms 9, 460 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Gasol, J. M., Zweifel, U., Peters, F., Fuhrman, J. D. & Hagström, H. Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in Natural Planktonic Bacteria. Appl. Environ. Microbiol. 65, 104475–104483 (1999).

    ADS 

    Google Scholar 

  • 48.

    Calvo-Díaz, A. & Morán, X. A. G. Seasonal dynamics of picoplankton in shelf waters of the southern Bay of Biscay. Aquat. Microb. Ecol. 42, 159–174 (2006).

    Google Scholar 

  • 49.

    Norland, S. The relationship between biomass and volume of bacteria. In Handbook of Methods in Aquatic Microbial Ecology (eds Kemp, P. F. et al.) 303–307 (CRC Press, 1993).

    Google Scholar 

  • 50.

    Kirchman, D., Knees, E. & Hodson, R. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Appl. Environ. Microbiol. 49, 599–607 (1985).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Smith, D. C. & Azam, F. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar. Microb. Food Webs 6, 107–114 (1992).

    Google Scholar 

  • 52.

    Massana, R. et al. Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Appl. Environ. Microbiol. 63, 50–56 (1997).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Herlemann, D. P. et al. Transitions in bacterial communities along the 2000km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    R Core Team. R: A language and environment for statistical computing http://www.r-project.org (2018).

  • 56.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Huse, S. M., Welch, D. M., Morrison, H. G. & Sogin, M. L. Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ. Microbiol. 12, 1889–1898 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.4–6 http://www.CRAN.R-project.org/package=vegan (2018).

  • 59.

    Álvarez-Salgado, X. A. & Miller, A. E. J. Simultaneous determination of dissolved organic carbon and total dissolved nitrogen in seawater by high temperature catalytic oxidation: Conditions for precise shipboard measurements. Mar. Chem. 62, 325–333 (1998).

    Google Scholar 

  • 60.

    Green, S. A. & Blough, N. V. Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol. Oceanogr. 29, 1903–1916 (1994).

    ADS 

    Google Scholar 

  • 61.

    Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).

    MathSciNet 
    MATH 

    Google Scholar 

  • 62.

    Pearson, K. Notes on the history of correlation. Biometrika 13, 25–45 (1920).

    Google Scholar 

  • 63.

    Addinsoft XLSTAT statistical and data analysis solution http://www.xlstat.com (2020).

  • 64.

    Burnham, K. & Anderson, D. Information and Likelihood Theory: A Basis for Model Selection and Inference in Model Selection and Inference: A Practical Information-Theoretic Approach 60–64 (Springer, 2002).

  • 65.

    Clarke, K. Nonparametric multivariate analyses of changes in community structure. Austral Ecol. 18, 117–143 (1993).

    Google Scholar 

  • 66.

    Quinn, T. P. et al. A field guide for the compositional analysis of any-omics data. GigaScience 8, giz107. https://doi.org/10.1093/gigascience/giz107 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Phenological mismatches between above- and belowground plant responses to climate warming

    Staphylococcus aureus isolates from Eurasian Beavers (Castor fiber) carry a novel phage-borne bicomponent leukocidin related to the Panton-Valentine leukocidin