in

Endocranial volume is variable and heritable, but not related to fitness, in a free-ranging primate

  • 1.

    Healy, S. D. & Rowe, C. A critique of comparative studies of brain size. Proc. R. Soc. B Biol. Sci. 274, 453–464 (2007).

    Article  Google Scholar 

  • 2.

    Roth, G. & Dicke, U. Evolution of the brain and intelligence. Trends Cogn. Sci. 9, 250–257 (2005).

    PubMed  Article  Google Scholar 

  • 3.

    Logan, C. J., Kruuk, L. E. B., Stanley, R., Thompson, A. M. & Clutton-Brock, T. H. Endocranial volume is heritable and is associated with longevity and fitness in a wild mammal. R. Soc. Open Sci. 3, 160622 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Dunbar, R. I. M. Neocortex size as a constraint on group size in primates. J. Hum. Evol. 22, 469–493 (1992).

    Article  Google Scholar 

  • 5.

    Innocenti, G. M. & Kaas, J. H. The cortex. Trends Neurosci. 18, 371–372 (1995).

    CAS  Article  Google Scholar 

  • 6.

    Kaas, J. H. The evolution of isocortex. Brain. Behav. Evol. 46, 187–196 (1995).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Barton, R. A. & Harvey, P. H. Mosaic evolution of brain structure in mammals. Nature 405, 1055–1058 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 8.

    Reader, S. M. & Laland, K. N. Social intelligence, innovation, and enhanced brain size in primates. Proc. Natl. Acad. Sci. 99, 4436–4441 (2002).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 9.

    Sol, D., Székely, T., Liker, A. & Lefebvre, L. Big-brained birds survive better in nature. Proc. R. Soc. B Biol. Sci. 274, 763–769 (2007).

    Article  Google Scholar 

  • 10.

    Benson-Amram, S., Dantzer, B., Stricker, G., Swanson, E. M. & Holekamp, K. E. Brain size predicts problem-solving ability in mammalian carnivores. Proc. Natl. Acad. Sci. USA 113, 2532–2537 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 11.

    Cartmill, M. New views on primate origins. Evol. Anthropol. Issues News Rev. 1, 105–111 (2005).

    Article  Google Scholar 

  • 12.

    Allman, J., McLaughlin, T. & Hakeem, A. Brain weight and life-span in primate species. Proc. Natl. Acad. Sci. 90, 118–122 (1993).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 13.

    González-Lagos, C., Sol, D. & Reader, S. M. Large-brained mammals live longer. J. Evol. Biol. 23, 1064–1074 (2010).

    PubMed  Article  Google Scholar 

  • 14.

    Harvey, P. H. & Bennett, P. M. Evolutionary biology: Brain size, energetics, ecology and life history patterns. Nature 306, 314–315 (1983).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 15.

    Aiello, L. C. & Wheeler, P. The expensive-tissue hypothesis: The brain and the digestive system in human and primate evolution. Curr. Anthropol. 36, 199–221 (1995).

    Article  Google Scholar 

  • 16.

    Kudo, H. & Dunbar, R. I. M. Neocortex size and social network size in primates. Anim. Behav. 62, 711–722 (2001).

    Article  Google Scholar 

  • 17.

    Schillaci, M. A. Sexual selection and the evolution of brain size in primates. PLoS ONE 1, e62 (2006).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Shultz, S. & Dunbar, R. I. M. The evolution of the social brain: anthropoid primates contrast with other vertebrates. Proc. R. Soc. B Biol. Sci. 274, 2429–2436 (2007).

    Article  Google Scholar 

  • 19.

    King, B. J. Extractive foraging and the evolution of primate intelligence. Hum. Evol. 1, 361–372 (1986).

    Article  Google Scholar 

  • 20.

    Barton, R. A. Neocortex size and behavioural ecology in primates. Proc. R. Soc. Lond. B 263, 173–177 (1996).

    ADS  CAS  Article  Google Scholar 

  • 21.

    DeCasien, A. R., Williams, S. A. & Higham, J. P. Primate brain size is predicted by diet but not sociality. Nat. Ecol. Evol. 1, 0112 (2017).

    Article  Google Scholar 

  • 22.

    Powell, L. E., Isler, K. & Barton, R. A. Re-evaluating the link between brain size and behavioural ecology in primates. Proc. R. Soc. B Biol. Sci. 284, 20171765 (2017).

    Article  Google Scholar 

  • 23.

    Dunbar, R. I. M. & Shultz, S. Why are there so many explanations for primate brain evolution?. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160244 (2017).

    Article  Google Scholar 

  • 24.

    Van Schaik, C. P. Why are diurnal primates living in groups?. Behaviour 87, 120–144 (1983).

    Article  Google Scholar 

  • 25.

    Van Schaik, C. P. & Van Hooff, J. A. R. A. M. On the ultimate causes of primate social systems. Behaviour 85, 91–117 (1983).

    Article  Google Scholar 

  • 26.

    Wrangham, R. W. An ecological model of female-bonded primate groups. Behaviour 75, 262–300 (1980).

    Article  Google Scholar 

  • 27.

    Atchley, W. R., Riska, B., Kohn, L. A. P., Plummer, A. A. & Rutledge, J. J. A quantitative genetic analysis of brain and body size associations, their origin and ontogeny: Data from mice. Evolution 38, 1165 (1984).

    PubMed  Article  Google Scholar 

  • 28.

    Riska, B. & Atchley, W. R. Genetics of growth predict patterns of brain-size evolution. Science 229, 668–671 (1985).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 29.

    Rogers, J. et al. Heritability of brain volume, surface area and shape: An MRI study in an extended pedigree of baboons. Hum. Brain Mapp. 28, 576–583 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Gómez-Robles, A., Hopkins, W. D., Schapiro, S. J. & Sherwood, C. C. Relaxed genetic control of cortical organization in human brains compared with chimpanzees. Proc. Natl. Acad. Sci. 112, 14799–14804 (2015).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 31.

    DeCasien, A. R., Sherwood, C. C., Schapiro, S. J. & Higham, J. P. Greater variability in chimpanzee (Pan troglodytes) brain structure among males. Proc. R. Soc. B 287, 20192858 (2020).

    PubMed  Article  Google Scholar 

  • 32.

    Fears, S. C. et al. Identifying heritable brain phenotypes in an extended pedigree of vervet monkeys. J. Neurosci. 29, 2867–2875 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Noreikiene, K. et al. Quantitative genetic analysis of brain size variation in sticklebacks: Support for the mosaic model of brain evolution. Proc. R. Soc. B Biol. Sci. 282, 20151008 (2015).

    Article  Google Scholar 

  • 34.

    Kotrschal, A. et al. Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Curr. Biol. 23, 168–171 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Cheverud, J. M. et al. Heritability of brain size and surface features in rhesus macaques (Macaca mulatta). J. Hered. 81, 51–57 (1990).

    CAS  PubMed  Article  Google Scholar 

  • 36.

    de Villemereuil, P. Tutorial estimation of a biological trait heritability using the animal model How to use the MCMCglmm R package. (2012).

  • 37.

    Axelrod, C. J., Laberge, F. & Robinson, B. W. Intraspecific brain size variation between coexisting sunfish ecotypes. Proc. R. Soc. B Biol. Sci. 285, 20181971 (2018).

    Article  Google Scholar 

  • 38.

    Blomquist, G. E. Fitness-related patterns of genetic variation in rhesus macaques. Genetica 135, 209–219 (2009).

    PubMed  Article  Google Scholar 

  • 39.

    Brent, L. J. N. et al. Personality traits in rhesus macaques (Macaca mulatta) are heritable but do not predict reproductive output. Int. J. Primatol. 35, 188–209 (2014).

    PubMed  Article  Google Scholar 

  • 40.

    Dubuc, C. et al. Sexually selected skin colour is heritable and related to fecundity in a non-human primate. Proc. R. Soc. B Biol. Sci. 281, 20141602 (2014).

    Article  Google Scholar 

  • 41.

    Kimock, C. M., Dubuc, C., Brent, L. J. N. & Higham, J. P. Male morphological traits are heritable but do not predict reproductive success in a sexually-dimorphic primate. Sci. Rep. 9, 19794 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Kruuk, L. E. B. Estimating genetic parameters in natural populations using the ‘animal model’. Philos. Trans. R. Soc. B 359, 873–890 (2004).

    Article  Google Scholar 

  • 43.

    Falk, D., Froese, N., Sade, D. S. & Dudek, B. C. Sex differences in brain/body relationships of Rhesus monkeys and humans. J. Hum. Evol. 36, 233–238 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Herndon, J. G., Tigges, J., Anderson, D. C., Klumpp, S. A. & McClure, H. M. Brain weight throughout the life span of the chimpanzee. J. Comp. Neurol. 409, 567–572 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    Iwaniuk, A. N. Interspecific variation in sexual dimorphism in brain size in Nearctic ground squirrels (Spermophilus spp.). Can. J. Zool. 79, 759–765 (2001).

    Article  Google Scholar 

  • 46.

    Towe, A. L. & Mann, M. D. Habitat-related variations in brain and body size of pocket gophers. J. Hirnforsch. 36, 195–201 (1995).

    CAS  PubMed  Google Scholar 

  • 47.

    Kotrschal, A., Räsänen, K., Kristjánsson, B. K., Senn, M. & Kolm, N. Extreme sexual brain size dimorphism in sticklebacks: A consequence of the cognitive challenges of sex and parenting?. PLoS ONE 7, e30055 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Ritchie, S. J. et al. Sex differences in the adult human brain: Evidence from 5216 uk biobank participants. Cereb. Cortex 28, 2959–2975 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Whitten, P. L. Diet and dominance among female vervet monkeys (Cercopithecus aethiops). Am. J. Primatol. 5, 139–159 (1983).

    PubMed  Article  Google Scholar 

  • 50.

    Mori, A. Analysis of population changes by measurement of body weight in the Koshima troop of Japanese monkeys. Primates 20, 371–397 (1979).

    Article  Google Scholar 

  • 51.

    Small, M. F. Body fat, rank, and nutritional status in a captive group of Rhesus Macaques. Int. J. Primatol. 2, 91–95 (1981).

    Article  Google Scholar 

  • 52.

    Sade, D. S. Population dynamics in relation to social structure on Cayo Santiago. Ybk. Phys. Anthr. 20, 253–262 (1976).

    Google Scholar 

  • 53.

    Silk, J. B., Clark-Wheatley, C. B., Rodman, P. S. & Samuels, A. Differential reproductive success and facultative adjustment of sex ratios among captive female bonnet macaques (Macaca radiata). Anim. Behav. 29, 1106–1120 (1981).

    Article  Google Scholar 

  • 54.

    Rawlins, R. G. & Kessler, M. J. The Cayo Santiago macaques: History, behavior, and biology (SUNY Series Primatology, Suny, 1986).

    Google Scholar 

  • 55.

    Kessler, M. J. & Rawlins, R. G. A 75-year pictorial history of the Cayo Santiago rhesus monkey colony. Am. J. Primatol. 78, 6–43 (2016).

    PubMed  Article  Google Scholar 

  • 56.

    Widdig, A. et al. Genetic studies on the Cayo Santiago rhesus macaques: A review of 40 years of research. Am. J. Primatol. 78, 44–62 (2016).

    PubMed  Article  Google Scholar 

  • 57.

    Widdig, A. et al. Low incidence of inbreeding in a long-lived primate population isolated for 75 years. Behav. Ecol. Sociobiol. 71, 18 (2017).

    PubMed  Article  Google Scholar 

  • 58.

    Cheverud, J. M. Epiphyseal union and dental eruption in Macaca mulatta. Am. J. Phys. Anthropol. 56, 157–167 (1981).

    CAS  PubMed  Article  Google Scholar 

  • 59.

    Turnquist, J. E. & Kessler, M. J. Free-ranging Cayo Santiago rhesus monkeys (Macaca mulatta): I. Body size, proportion, and allometry. Am. J. Primatol. 19, 1–13 (1989).

    PubMed  Article  Google Scholar 

  • 60.

    Havill, L. M. Osteon remodeling dynamics in macaca mulatta: Normal variation with regard to age, sex, and skeletal maturity. Calcif. Tissue Int. 74, 95–102 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 61.

    Konigsberg, L. et al. External brain morphology in rhesus macaques (Macaca mulatta). J. Hum. Evol. 19, 269–284 (1990).

    Article  Google Scholar 

  • 62.

    Logan, C. J. & Clutton-Brock, T. H. Validating methods for estimating endocranial volume in individual red deer (Cervus elaphus). Behav. Process. 92, 143–146 (2013).

    Article  Google Scholar 

  • 63.

    Jolly, C. The classification and natural history of Theropithecus (Simopithecus) (Andrew, 1916) baboons of the African Plio-Pleistocene. (Bull. Brit. Mus. Nat. Hist., 1972).

  • 64.

    Delson, E. et al. Body mass in Cercopithecidae (Primates, mammalia): Estimation and scaling in extinct and extant taxa. (American Museum of Natural History, 2000).

  • 65.

    Hadfield, J. D., Richardson, D. S. & Burke, T. Towards unbiased parentage assignment: Combining genetic, behavioural and spatial data in a Bayesian framework. Mol. Ecol. 15, 3715–3730 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 66.

    Hadfield, J. D. MCMCglmm Course Notes. (2016).

  • 67.

    Morrissey, M. B. & Wilson, A. J. pedantics: An r package for pedigree-based genetic simulation and pedigree manipulation, characterization and viewing: Computer program article. Mol. Ecol. Resour. 10, 711–719 (2009).

    PubMed  Article  Google Scholar 

  • 68.

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Article  Google Scholar 

  • 69.

    Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 70.

    Wilson, A. J. et al. An ecologist’s guide to the animal model. J. Anim. Ecol. 79, 13–26 (2010).

    PubMed  Article  Google Scholar 

  • 71.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 13 (2017).

    Article  Google Scholar 

  • 72.

    Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).

    PubMed  Article  Google Scholar 

  • 73.

    Morrissey, M. B. & Sakrejda, K. Unification of regression-based methods for the analysis of natural selection. Evolution 67, 2094–2100 (2013).

    PubMed  Article  Google Scholar 

  • 74.

    Stinchcombe, J., Agrawal, A., Hohenlohe, P., Arnold, S. & Blows, M. Estimating nonlinear selection gradients using quadratic regression coefficients: Double or nothing?. Evolution 62, 2435–2440 (2008).

    PubMed  Article  Google Scholar 

  • 75.

    Matsumura, S., Arlinghaus, R. & Dieckmann, U. Standardizing selection strengths to study selection in the wild: A critical comparison and suggestions for the future. Bioscience 62, 1039–1054 (2012).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    The catalyzing potential of J-WAFS seed grants

    Viromes outperform total metagenomes in revealing the spatiotemporal patterns of agricultural soil viral communities