in

Endophytic bacterial communities are associated with leaf mimicry in the vine Boquila trifoliolata

  • 1.

    Wiens, D. Mimicry in plants. Evol. Biol. 11, 365–403 (1978).

    Google Scholar 

  • 2.

    Pasteur, G. A classificatory review of mimicry systems. Annu. Rev. Ecol. Syst. 13, 169–199 (1982).

    Google Scholar 

  • 3.

    Barrett, S. C. H. Mimicry in plants. Sci. Am. 257, 76–85 (1987).

    Google Scholar 

  • 4.

    Barlow, B. A. & Wiens, D. Host-parasite resemblance in Australian mistletoes: The case for cryptic mimicry. Evolution 31, 69–84 (1977).

    PubMed 

    Google Scholar 

  • 5.

    Ehleringer, J. R. et al. Mistletoes: A hypothesis concerning morphological and chemical avoidance of herbivory. Oecologia 70, 234–237 (1986).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Canyon, D. V. & Hill, C. J. Mistletoe host-resemblance: A study of herbivory, nitrogen and moisture in two Australian mistletoes and their host trees. Aust. J. Ecol. 22, 395–403 (1997).

    Google Scholar 

  • 7.

    Blick, R. A. J., Burns, K. C. & Moles, A. T. Predicting network topology of mistletoe–host interactions: Do mistletoes really mimic their hosts?. Oikos 121, 761–771 (2012).

    Google Scholar 

  • 8.

    Gianoli, E. & Carrasco-Urra, F. Leaf mimicry in a climbing plant protects against herbivory. Curr. Biol. 24, 984–987 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Gianoli, E., Saldaña, A., Jiménez-Castillo, M. & Valladares, F. Distribution and abundance of vines along the light gradient in a southern temperate rainforest. J. Veg. Sci. 21, 66–73 (2010).

    Google Scholar 

  • 10.

    Gianoli, E. Eyes in the chameleon vine?. Trends Plant Sci. 22, 4–5 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Gianoli, E. & Molina-Montenegro, M. A. Leaf damage induces twining in a climbing plant. New Phytol. 167, 385–390 (2005).

    PubMed 

    Google Scholar 

  • 12.

    González-Teuber, M. & Gianoli, E. Damage and shade enhance climbing and promote associational resistance in a climbing plant. J. Ecol. 96, 122–126 (2008).

    Google Scholar 

  • 13.

    Calder, D. M. Mistletoes in focus: An introduction. In The Biology of Mistletoes (eds Calder, D. M. & Bernhardt, P.) 1–18 (Academic Press, 1983).

    Google Scholar 

  • 14.

    Cook, M. E., Leigh, A. & Watson, D. M. Hiding in plain sight: Experimental evidence for birds as selective agents for host mimicry in mistletoes. Botany 98, 525–531 (2020).

    Google Scholar 

  • 15.

    Atsatt, P. R. Mistletoe leaf shape: A host morphogen hypothesis. In The Biology of Mistletoes (eds Calder, D. M. & Bernhardt, P.) 259–275 (Academic Press, 1983).

    Google Scholar 

  • 16.

    Hall, P. J., Badenoch-Jones, J., Parker, C. W., Letham, D. S. & Barlow, B. A. Identification and quantification of cytokinins in the xylem sap of mistletoes and their hosts in relation to leaf mimicry. Aust. J. Plant Physiol. 14, 429–438 (1987).

    CAS 

    Google Scholar 

  • 17.

    Watson, D. M. Mistletoes of Southern Australia (CSIRO, 2019).

    Google Scholar 

  • 18.

    Holopainen, J. K. & Blande, J. D. Molecular plant volatile communication. In Sensing in Nature (ed. López-Larrea, C.) 17–31 (Springer Science, 2012).

    Google Scholar 

  • 19.

    Baldwin, I. T., Kessler, A. & Halitschke, R. Volatile signaling in plant–plant–herbivore interactions: What is real?. Curr. Opin. Plant Biol. 5, 351–354 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Heil, M. & Karban, R. Explaining evolution of plant communication by airborne signals. Trends Ecol. Evol. 25, 137–144 (2010).

    PubMed 

    Google Scholar 

  • 21.

    Karban, R., Yang, L. H. & Edwards, K. F. Volatile communication between plants that affects herbivory: A meta-analysis. Ecol. Lett. 17, 44–52 (2014).

    PubMed 

    Google Scholar 

  • 22.

    Coyne, J. A. Fantastic and plastic mimicry in a tropical vine. Why Evolution is True Blog. http://whyevolutionistrue.com/2014/04/26/fantastic-and-plastic-mimicry-in-a-tropical-vine (2014).

  • 23.

    Pannell, J. R. Leaf mimicry: Chameleon-like leaves in a Patagonian vine. Curr. Biol. 24, R357–R359 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Baluška, F. & Mancuso, S. Vision in plants via plant-specific ocelli?. Trends Plant Sci. 21, 727–730 (2016).

    PubMed 

    Google Scholar 

  • 25.

    Richardson, A. O. & Palmer, J. D. Horizontal gene transfer in plants. J. Exp. Bot. 58, 1–9 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Bock, R. The give-and-take of DNA: Horizontal gene transfer in plants. Trends Plant Sci. 15, 11–22 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Yoshida, S., Maruyama, S., Nozaki, H. & Shirasu, K. Horizontal gene transfer by the parasitic plant Striga hermonthica. Science 328, 1128 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Christin, P. A. et al. Adaptive evolution of C4 photosynthesis through recurrent lateral gene transfer. Curr. Biol. 22, 445–449 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Gao, C. et al. Horizontal gene transfer in plants. Funct. Integr. Genomics 14, 23–29 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Diao, X., Freeling, M. & Lisch, D. Horizontal transfer of a plant transposon. PLoS Biol. 4, e5 (2006).

    PubMed 

    Google Scholar 

  • 31.

    El Baidouri, M. et al. Widespread and frequent horizontal transfers of transposable elements in plants. Genome Res. 24, 831–838 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Prentice, H. C., Li, Y., Lönn, M., Tunlid, A. & Ghatnekar, L. A horizontally transferred nuclear gene is associated with microhabitat variation in a natural plant population. Proc. R. Soc. B Biol. Sci. 282, 20152453 (2015).

    Google Scholar 

  • 33.

    Yu, A. et al. Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc. Natl. Acad. Sci. 110, 2389–2394 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Takahashi, K. Influence of bacteria on epigenetic gene control. Cell. Mol. Life Sci. 71, 1045–1054 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Ramos-Cruz, D., Troyee, A. N. & Becker, C. Epigenetics in plant organismic interactions. Curr. Opin. Plant Biol. 61, 102060 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Lodewyckx, C. et al. Endophytic bacteria and their potential applications. Crit. Rev. Plant Sci. 21, 583–606 (2002).

    Google Scholar 

  • 37.

    Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J. & Dowling, D. N. Bacterial endophytes: Recent developments and applications. FEMS Microbiol. Lett. 278, 1–9 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Barrett, S. C. H. Crop mimicry in weeds. Econ. Bot. 37, 255–282 (1983).

    Google Scholar 

  • 39.

    McElroy, J. S. Vavilovian mimicry: Nikolai Vavilov and his little-known impact on weed science. Weed Sci. 62, 207–216 (2014).

    CAS 

    Google Scholar 

  • 40.

    Ye, C.-Y. et al. Genomic evidence of human selection on Vavilovian mimicry. Nat. Ecol. Evol. 3, 1474–1482 (2019).

    PubMed 

    Google Scholar 

  • 41.

    Ruiz, E. Lardizabalaceae. In Flora de Chile Vol. 2 (eds Marticorena, C. & Rodríguez, R.) 24–27 (Universidad de Concepción, 2003).

    Google Scholar 

  • 42.

    Muñoz-Schick, M. Flora del Parque Nacional Puyehue (Editorial Universitaria, 1980).

    Google Scholar 

  • 43.

    Dorsch K. Hydrogeologische Untersuchungen der Geothermalfelder von Puyehue und Cordón Caulle, Chile. PhD thesis (Ludwig-Maximilians-Universität, 2003).

  • 44.

    Valladares, F., Saldaña, A. & Gianoli, E. Costs versus risks: Architectural changes with changing light quantity and quality in saplings of temperate rainforest trees of different shade tolerance. Austral Ecol. 37, 35–43 (2012).

    Google Scholar 

  • 45.

    Salgado-Luarte, C. & Gianoli, E. Shade-tolerance and herbivory are associated with RGR of tree species via different functional traits. Plant Biol. 19, 413–419 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Salgado-Luarte, C. & Gianoli, E. Herbivory on temperate rainforest seedlings in sun and shade: Resistance, tolerance and habitat distribution. PLoS One 5, e11460 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Salgado-Luarte, C. & Gianoli, E. Herbivores modify selection on plant functional traits in a temperate rainforest understory. Am. Nat. 180, E42–E53 (2012).

    PubMed 

    Google Scholar 

  • 48.

    Sun, B. Y., Stuessy, T. F., Humaña, A. M., Riveros, G. M. & Crawford, D. J. Evolution of Rhaphithamnus venustus (Verbenaceae), a gynodioecious hummingbird-pollinated endemic of the Juan Fernandez Islands, Chile. Pac. Sci. 50, 55–65 (1996).

    Google Scholar 

  • 49.

    Saldaña, A. & Lusk, C. H. Influencia de las especies del dosel en la disponibilidad de recursos y regeneración avanzada en un bosque templado lluvioso del sur de Chile. Rev. Chil. Hist. Nat. 76, 639–650 (2003).

    Google Scholar 

  • 50.

    Gut, B. Árboles-Trees Patagonia. Árboles nativos e introducidos en Patagonia (Vázquez Mazzini, 2017).

    Google Scholar 

  • 51.

    Sahu, S. K., Thangaraj, M. & Kathiresan, K. DNA extraction protocol for plants with high levels of secondary metabolites and polysaccharides without using liquid nitrogen and phenol. ISRN Mol. Biol. 2012, 205049 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. & Dangl, J. L. Practical innovations for high-throughput amplicon sequencing. Nat. Methods 10, 999–1002 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, 2011).

    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    Photoheterotrophy by aerobic anoxygenic bacteria modulates carbon fluxes in a freshwater lake

    The reasons behind lithium-ion batteries’ rapid cost decline