Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Côté, I. M. & Watkinson, A. R. Flattening of Caribbean coral reefs: Region-wide declines in architectural complexity. Proc. R. Soc. B Biol. Sci. 276, 3019–3025 (2009).
Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).
Google Scholar
Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
Google Scholar
Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).
Google Scholar
Loya, Y. et al. Coral bleaching: The winners and the losers. Ecol. Lett. 4, 122–131 (2001).
Anthony, K. R. N., Hoogenboom, M. O., Maynard, J. A., Grottoli, A. G. & Middlebrook, R. Energetics approach to predicting mortality risk from environmental stress: A case study of coral bleaching. Funct. Ecol. 23, 539–550 (2009).
Depczynski, M. et al. Bleaching, coral mortality and subsequent survivorship on a West Australian fringing reef. Coral Reefs 32, 233–238 (2013).
Google Scholar
Edmunds, P. J. Implications of high rates of sexual recruitment in driving rapid reef recovery in Mo’orea, French Polynesia. Sci. Rep. 8, 16615. https://doi.org/10.1038/s41598-018-34686-z (2018).
Google Scholar
Richmond, R. H., Tisthammer, K. H. & Spies, N. P. The effects of anthropogenic stressors on reproduction and recruitment of corals and reef organisms. Front. Mar. Sci. 5, 266. https://doi.org/10.3389/fmars.2018.00226 (2018).
Google Scholar
Oliver, E. C. J. et al. Marine heatwaves. Ann. Rev. Mar. Sci. 13, 313–342 (2021).
Google Scholar
Rinkevich, B. The contribution of photosynthetic products to coral reproduction. Mar. Biol. 101, 259–263 (1989).
Google Scholar
Lesser, M. P. Using energetic budgets to assess the effects of environmental stress on corals: Are we measuring the right things?. Coral Reefs 32, 25–33 (2013).
Google Scholar
Muscatine, L., McCloskey, L. & Marian, R. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol. Oceanogr. 26, 601–611 (1981).
Google Scholar
Rodrigues, L. J. & Grottoli, A. G. Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol. Oceanogr. 52, 1874–1882 (2007).
Google Scholar
Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc. Natl. Acad. Sci. USA 118, e2022653118. https://doi.org/10.1073/pnas.2022653118 (2021).
Google Scholar
Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189 (2006).
Google Scholar
Schoepf, V. et al. Annual coral bleaching and the long-term recovery capacity of coral. Proc. R. Soc. B 282, 20151887. https://doi.org/10.1098/rspb.2015.1997 (2015).
Google Scholar
Leuzinger, S., Willis, B. L. & Anthony, K. R. N. Energy allocation in a reef coral under varying resource availability. Mar. Biol. 159, 177–186 (2012).
Oren, U., Benayahu, Y., Lubinevsky, H. & Loya, Y. Colony integration during regeneration in the stony coral Favia favus. Ecology 82, 802–813 (2001).
Fisch, J., Drury, C., Towle, E. K., Winter, R. N. & Miller, M. W. Physiological and reproductive repercussions of consecutive summer bleaching events of the threatened Caribbean coral Orbicella faveolata. Coral Reefs 38, 863–876 (2019).
Google Scholar
Ward, S., Harrison, P. & Hoegh-Guldberg, O. Coral bleaching reduces reproduction of scleractinian corals and increases susceptibility to future stress. Proc. 9th Int. Coral Reef Symp. 1123–1128 (2002).
Levitan, D. R., Boudreau, W., Jara, J. & Knowlton, N. Long-term reduced spawning in Orbicella coral species due to temperature stress. Mar. Ecol. Prog. Ser. 515, 1–10 (2014).
Google Scholar
Johnston, E. C., Counsell, C. W. W., Sale, T. L., Burgess, S. C. & Toonen, R. J. The legacy of stress: Coral bleaching impacts reproduction years later. Funct. Ecol. 34, 2315–2325 (2020).
Szmant, A. M. & Gassman, N. J. The effects of prolonged ‘bleaching’ on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8, 217–224 (1990).
Google Scholar
Jones, A. M. & Berkelmans, R. Tradeoffs to thermal acclimation: energetics and reproduction of a reef coral with heat tolerant Symbiodinium Type-D. J. Mar. Biol. 2011, 185890. https://doi.org/10.1155/2011/185890 (2011).
Google Scholar
Figueiredo, J. et al. Ontogenetic change in the lipid and fatty acid composition of scleractinian coral larvae. Coral Reefs 31, 613–619 (2012).
Google Scholar
Hagedorn, M. et al. Potential bleaching effects on coral reproduction. Reprod. Fertil. Dev. 28, 1061–1071 (2016).
Google Scholar
Michalek-Wagner, K. & Willis, B. L. Impacts of bleaching on the soft coral Lobophytum compactum. I. Fecundity, fertilization and offspring viability. Coral Reefs 19, 231–239 (2001).
Howells, E. J. et al. Species-specific trends in the reproductive output of corals across environmental gradients and bleaching histories. Mar. Pollut. Bull. 105, 532–539 (2016).
Google Scholar
Godoy, L. et al. Southwestern Atlantic reef-building corals Mussismilia spp. are able to spawn while fully bleached. Mar. Biol. 168, 15. https://doi.org/10.1007/s00227-021-03824-z (2021).
Google Scholar
Veron, J. E. Acropora hyacinthus. in Corals of the World, vol. 1–3. (ed. Veron, J. E.) 404–405 (Australian Institute of Marine Sciences, 2000).
Pratchett, M. S., McCowan, D., Maynard, J. A. & Heron, S. F. Changes in bleaching susceptibility among corals subject to ocean warming and recurrent bleaching in Moorea, French polynesia. PLoS ONE 8, e70443. https://doi.org/10.1371/journal.pone.0070443 (2013).
Google Scholar
Speare, K. E., Adam, T. C., Winslow, E. M., Lenihan, H. S. & Burkepile, D. E. Size-dependent mortality of corals during marine heatwave erodes recovery capacity of a coral reef. Glob. Change Biol. https://doi.org/10.1111/gcb.16000 (2021).
Google Scholar
Holbrook, S. J. et al. Recruitment drives spatial variation in recovery rates of resilient coral reefs. Sci. Rep. 8, 7338. https://doi.org/10.1038/s41598-018-25414-8 (2018).
Google Scholar
Carroll, A., Harrison, P. & Adjeroud, M. Sexual reproduction of Acropora reef corals at Moorea, French polynesia. Coral Reefs 25, 93–97 (2006).
Google Scholar
Tsounis, G. et al. Anthropogenic effects on reproductive effort and allocation of energy reserves in the Mediterranean octocoral Paramuricea clavata. Mar. Ecol. Prog. Ser. 449, 161–172 (2012).
Google Scholar
Wall, C. B., Ritson-Williams, R., Popp, B. N. & Gates, R. D. Spatial variation in the biochemical and isotopic composition of corals during bleaching and recovery. Limnol. Oceanogr. 64, 2011–2028 (2019).
Google Scholar
Jung, E. M. U., Stat, M., Thomas, L., Koziol, A. & Schoepf, V. Coral host physiology and symbiont dynamics associated with differential recovery from mass bleaching in an extreme, macro-tidal reef environment in northwest Australia. Coral Reefs 40, 893–905 (2021).
Tremblay, P., Gori, A., Maguer, J. F., Hoogenboom, M. & Ferrier-Pagès, C. Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress. Sci. Rep. 6, 38112. https://doi.org/10.1038/srep38112 (2016).
Google Scholar
Baumann, J., Grottoli, A. G., Hughes, A. D. & Matsui, Y. Photoautotrophic and heterotrophic carbon in bleached and non-bleached coral lipid acquisition and storage. J. Exp. Mar. Bio. Ecol. 461, 469–478 (2014).
Google Scholar
Grottoli, A. G. et al. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Chang. Biol. 20, 3823–3833 (2014).
Google Scholar
Graham, E. M., Baird, A. H., Connolly, S. R., Sewell, M. A. & Willis, B. L. Rapid declines in metabolism explain extended coral larval longevity. Coral Reefs 32, 539–549 (2013).
Google Scholar
Michalek-Wagner, K. & Willis, B. L. Impacts of bleaching on the soft coral Lobophytum compactum. II. Biochemical changes in adults and their eggs. Coral Reefs 19, 240–246 (2001).
Harii, S., Nadaoka, K., Yamamoto, M. & Iwao, K. Temporal changes in settlement, lipid content and lipid composition of larvae of the spawning hermatypic coral Acropora tenuis. Mar. Ecol. Prog. Ser. 346, 89–96 (2007).
Google Scholar
Wallace, C. C. Reproduction, recruitment and fragmentation in nine sympatric species of the coral genus Acropora. Mar. Biol. 88, 217–233 (1985).
Ziegler, R. & Ibrahim, M. M. Formation of lipid reserves in fat body and eggs of the yellow fever mosquito, Aedes aegypti. J. Insect Physiol. 47, 623–627 (2001).
Google Scholar
Baliña, S., Temperoni, B., Greco, L. S. L. & Tropea, C. Losing reproduction: effect of high temperature on female biochemical composition and egg quality in a freshwater crustacean with direct development, the red cherry shrimp, Neocaridina davidi (Decapoda, Atyidae). Biol. Bull. 234, 139–151 (2018).
Google Scholar
Levitan, D. R. The relationship between egg size and fertilization success in broadcast-spawning marine invertebrates. Integr. Comp. Biol. 46, 298–311 (2006).
Google Scholar
Caballes, C. F., Pratchett, M. S., Kerr, A. M. & Rivera-Posada, J. A. The role of maternal nutrition on oocyte size and quality, with respect to early larval development in the coral-eating starfish, Acanthaster planci. PLoS ONE 11, e0158007. https://doi.org/10.1371/journal.pone.0158007 (2016).
Google Scholar
Madin, J. S. et al. The Coral Trait Database, a curated database of trait information for coral species from the global oceans. Sci. Data 4, 160017. https://doi.org/10.1038/sdata.2016.17 (2017).
Google Scholar
Foster, T. & Gilmour, J. Egg size and fecundity of biannually spawning corals at Scott Reef. Sci. Rep. 10, 12313. https://doi.org/10.1038/s41598-020-68289-4 (2020).
Google Scholar
Harriott, V. J. Reproductive ecology of four scleratinian species at Lizard Island, Great Barrier Reef. Coral Reefs 2, 9–18 (1983).
Google Scholar
Vargas-Ángel, B., Colley, S. B., Hoke, S. M. & Thomas, J. D. The reproductive seasonality and gametogenic cycle of Acropora cervicornis off Broward County, Florida, USA. Coral Reefs 25, 110–122 (2006).
Google Scholar
Hall, V. R. & Hughes, T. P. Reproductive strategies of modular organisms: comparative studies of reef-building corals. Ecology 77, 950–963 (1996).
Brandt, M. E. The effect of species and colony size on the bleaching response of reef-building corals in the Florida Keys during the 2005 mass bleaching event. Coral Reefs 28, 911–924 (2009).
Google Scholar
Sakai, K., Singh, T. & Iguchi, A. Bleaching and post-bleaching mortality of Acropora corals on a heat-susceptible reef in 2016. PeerJ 2019, e8138. https://doi.org/10.7717/peerj.8138 (2019).
Google Scholar
Nozawa, Y. & Lin, C. H. Effects of colony size and polyp position on polyp fecundity in the scleractinian coral genus Acropora. Coral Reefs 33, 1057–1066 (2014).
Google Scholar
Álvarez-Noriega, M. et al. Fecundity and the demographic strategies of coral morphologies. Ecology 97, 3485–3493 (2016).
Google Scholar
Bena, C. & Van Woesik, R. The impact of two bleaching events on the survival of small coral colonies (Okinawa, Japan). Bull. Mar. Sci. 75, 115–125 (2004).
Shenkar, N., Fine, M. & Loya, Y. Size matters: Bleaching dynamics of the coral Oculina patagonica. Mar. Ecol. Prog. Ser. 294, 181–188 (2005).
Google Scholar
Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390 (2019).
Google Scholar
McClanahan, T. R., Maina, J., Moothien-Pillay, R. & Baker, A. C. Effects of geography, taxa, water flow, and temperature variation on coral bleaching intensity in Mauritius. Mar. Ecol. Prog. Ser. 298, 131–142 (2005).
Google Scholar
Hoogenboom, M. O. et al. Environmental drivers of variation in bleaching severity of Acropora species during an extreme thermal anomaly. Front. Mar. Sci. 4, 376. https://doi.org/10.3389/fmars.2017.00376 (2017).
Google Scholar
Schoepf, V. et al. Thermally variable, macrotidal reef habitats promote rapid recovery from mass coral bleaching. Front. Mar. Sci. 7, 245. https://doi.org/10.3389/fmars.2020.00245 (2020).
Google Scholar
Golbuu, Y. et al. Palau’s coral reefs show differential habitat recovery following the 1998-bleaching event. Coral Reefs 26, 319–332 (2007).
van Woesik, R. et al. Climate-change refugia in the sheltered bays of Palau: Analogs of future reefs. Ecol. Evol. 2, 2474–2484 (2012).
Google Scholar
Penin, L., Adjeroud, M., Schrimm, M. & Lenihan, H. S. High spatial variability in coral bleaching around Moorea (French Polynesia): Patterns across locations and water depths. C. R. Biol. 330, 171–181 (2007).
Google Scholar
Penin, L., Vidal-Dupiol, J. & Adjeroud, M. Response of coral assemblages to thermal stress: Are bleaching intensity and spatial patterns consistent between events?. Environ. Monit. Assess. 185, 5031–5042 (2013).
Google Scholar
Brown, B. E., Downs, C. A., Dunne, R. P. & Gibb, S. W. Exploring the basis of thermotolerance in the reef coral Goniastrea aspera. Mar. Ecol. Prog. Ser. 242, 119–129 (2002).
Google Scholar
Kenkel, C. D. et al. Evidence for a host role in thermotolerance divergence between populations of the mustard hill coral (Porites astreoides) from different reef environments. Mol. Ecol. 22, 4335–4348 (2013).
Google Scholar
Burt, J. A. & Bauman, A. G. Suppressed coral settlement following mass bleaching in the southern Persian/Arabian Gulf. Aquat. Ecosyst. Heal. Manag. 23, 166–174 (2020).
Shlesinger, T. & Loya, Y. Breakdown in spawning synchrony: A silent threat to coral persistence. Science 365, 1002–1007 (2019).
Google Scholar
Edmunds, P., Gates, R. & Gleason, D. The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances. Mar. Biol. 139, 981–989 (2001).
Edmunds, P. J. Spatiotemporal variation in coral recruitment and its association with seawater temperature. Limnol. Oceanogr. 66, 1394–1408 (2021).
Google Scholar
Bouwmeester, J. et al. Latitudinal variation in monthly-scale reproductive synchrony among Acropora coral assemblages in the Indo-Pacific. Coral Reefs 40, 1411–1418 (2021).
Edmunds, P. J. MCR LTER: Coral reef: Long-term population and community dynamics: Corals, ongoing since 2005. knb-lter-mcr.4.38. 10.6073/pasta/10ee808a046cb63c0b8e3bc3c9799806 (2020).
Claar, D. C. & Baum, J. K. Timing matters: Survey timing during extended heat stress can influence perceptions of coral susceptibility to bleaching. Coral Reefs 38, 559–565 (2019).
Google Scholar
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
Google Scholar
Leichter, J., Seydel, K. & Gotschalk, C. MCR LTER: Coral reef: Benthic water temperature, ongoing since 2005. knb-lter-mcr.1035.13. 10.6073/pasta/2087a33cdd16986352bed443fecc7fd7 (2020).
Bradford, M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
Google Scholar
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1955).
Masuko, T. et al. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal. Biochem. 339, 69–72 (2005).
Google Scholar
Stimson, J. & Kinzie, R. A. The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J. Exp. Mar. Bio. Ecol. 153, 63–74 (1991).
Szmant-Froelich, A., Rhetter, M. & Riggs, L. Sexual reproduction of Favis fragum (ESPER): lunar patterns of gametogenesis, embryogenesis and planulation in Puerto Rico. Bull. Mar. Sci. 37, 880–892 (1985).
Source: Ecology - nature.com