in

Energetic context determines the effects of multiple upwelling-associated stressors on sea urchin performance

  • 1.

    Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. USA 113, 13785–13790 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Filbee-Dexter, K. & Scheibling, R. E. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar. Ecol. Prog. Ser. 495, 1–25 (2014).

    ADS 
    Article 

    Google Scholar 

  • 3.

    Steneck, R. S. et al. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459 (2002).

    Article 

    Google Scholar 

  • 4.

    Steneck, R. S. Regular sea urchins as drivers of shallow benthic marine community structure. Dev. Aquacult. Fish. Sci. 43, 255–279 (2020).

    Google Scholar 

  • 5.

    Rogers-Bennett, L. & Catton, C. A. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Sci. Rep. 9, 1–9 (2019).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Pearse, J. S. Ecological role of purple sea urchins. Science 31, 940–941 (2006).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 7.

    Harrold, C. & Reed, D. C. Food availability, sea urchin grazing, and kelp forest community structure. Ecology 66, 1160–1169 (1985).

    Article 

    Google Scholar 

  • 8.

    Kriegisch, N., Reeves, S. E., Flukes, E. B., Johnson, C. R. & Ling, S. D. Drift-kelp suppresses foraging movement of overgrazing sea urchins. Oecologia 190, 665–677 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Pearse, J. S. & Hines, A. H. Long-term population dynamics of sea urchins in a central California kelp forest: rare recruitment and rapid decline. Mar. Ecol. Prog. Ser. 39, 275–283 (1987).

    ADS 
    Article 

    Google Scholar 

  • 10.

    Watanabe, J. M. & Harrold, C. Destructive grazing by sea urchins Strongylocentrotus spp. in a central California kelp forest: potential roles of recruitment, depth, and predation. Mar. Ecol. Prog. Ser. 71, 125–141 (1991).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Reid, J. et al. The economic value of the recreational red abalone fishery in northern California. Calif. Fish Game 102, 119–130 (2016).

    Google Scholar 

  • 12.

    Menge, B. A. & Menge, D. N. Dynamics of coastal meta-ecosystems: the intermittent upwelling hypothesis and a test in rocky intertidal regions. Ecol. Monogr. 83, 283–310 (2013).

    Article 

    Google Scholar 

  • 13.

    Breitburg, D. L., Loher, T., Pacey, C. A. & Gerstein, A. Varying effects of low dissolved oxygen on trophic interactions in an estuarine food web. Ecol. Monogr. 67, 489–507 (1997).

    Article 

    Google Scholar 

  • 14.

    Hauri, C. et al. (2009) Ocean acidification in the California current system. Oceanography 22, 60–71 (2009).

    Article 

    Google Scholar 

  • 15.

    Connell, S. D. & Russell, B. D. The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc. R. Soc. B 277, 1409–1415 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Sellers, A. J. et al. Seasonal upwelling reduces herbivore control of tropical rocky intertidal algal communities. Ecology e03335 https://doi.org/10.1002/ecy.3335(2021).

  • 17.

    Moulin, L., Grosjean, P., Leblud, J., Batigny, A. & Dubois, P. Impact of elevated pCO2 on acid-base regulation of the sea urchin Echinometra mathaei and its relation to resistance to ocean acidification: a study in mesocosms. J. Exp. Mar. Biol. Ecol. 457, 97–104 (2014).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Siikavuopio, S. I., Dale, T., Mortensen, A. & Foss, A. Effects of hypoxia on feed intake and gonad growth in the green sea urchin, Strongylocentrotus droebachiensis. Aquaculture 266, 112–116 (2007).

    Article 

    Google Scholar 

  • 19.

    Low, H. N. N. The Effects of Upwelling-driven Hypoxia on Sea Urchins in California Current Kelp Forests. PhD dissertation, Stanford University, Stanford, CA (2018).

  • 20.

    Low, N. H. & Micheli, F. Lethal and functional thresholds of hypoxia in two key benthic grazers. Mar. Ecol. Prog. Ser. 594, 165–173 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 21.

    Low, N. H. & Micheli, F. Short-and long-term impacts of variable hypoxia exposures on kelp forest sea urchins. Sci. Rep. 10, 1–9 (2020).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Huyer, A. Coastal upwelling in the California current system. Prog. Oceanogr. 12, 259–284 (1983).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Frieder, C. A., Nam, S. H., Martz, T. R. & Levin, L. A. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences 9, 3917–3930 (2012).

  • 24.

    Feely, R. A. et al. The combined effects of acidification and hypoxia on pH and aragonite saturation in the coastal waters of the California current ecosystem and the northern Gulf of Mexico. Cont. Shelf Res. 152, 50–60 (2018).

    ADS 
    Article 

    Google Scholar 

  • 25.

    Chan, F. et al. Persistent spatial structuring of coastal ocean acidification in the California Current System. Sci. Rep. 7, 1–7 (2017).

    Article 
    CAS 

    Google Scholar 

  • 26.

    Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Feely, R. A. et al. Chemical and biological impacts of ocean acidification along the west coast of North America. Estuar. Coast. Shelf Sci. 183, 260–270 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 28.

    Iles, A. C. et al. Climate-driven trends and ecological implications of event-scale upwelling in the California Current System. Glob. Change Biol. 18, 783–796 (2012).

    ADS 
    Article 

    Google Scholar 

  • 29.

    CeNCOOS. Real-Time Sensor Feeds of Oceanographic and Atmospheric Models’ Online Tool to Extract Temperature, pH, and Dissolved Oxygen. https://data.cencoos.org (2020).

  • 30.

    Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 247, 198–201 (1990).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    McGregor, H. V., Dima, M., Fischer, H. W. & Mulitza, S. Rapid 20th-century increase in coastal upwelling off northwest Africa. Science 315, 637–639 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Narayan, N., Paul, A., Mulitza, S. & Schulz, M. Trends in coastal upwelling intensity during the late 20th century. Ocean Sci. 6, 815–823 (2010).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Barton, E. D. D., Field, D. B. B. & Roy, C. Canary current upwelling: more or less?. Prog. Oceanogr. 116, 167–178 (2013).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Mote, P. W. & Mantua, N. J. Coastal upwelling in a warmer future. Geophys. Res. Lett. 29, 2138 (2002).

    ADS 
    Article 

    Google Scholar 

  • 35.

    Bakun, A. et al. Anticipated effects of climate change on coastal upwelling ecosystems. Curr. Clim. Change Rep. 1, 85–93 (2015).

    Article 

    Google Scholar 

  • 36.

    Wang, D., Gouhier, T. C., Menge, B. A. & Ganguly, A. R. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 518, 390–394 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Snyder, M. A., Sloan, L. C., Diffenbaugh, N. S. & Bell, J. L. Future climate change and upwelling in the California Current. Geophys. Res. Lett. 30, 1823 (2003).

  • 38.

    García‐Reyes, M. & Largier, J. Observations of increased wind‐driven coastal upwelling off central California. J. Geophys. Res. Oceans 115, 1–8 (2010).

  • 39.

    Varela, R., Álvarez, I., Santos, F., DeCastro, M. & Gómez-Gesteira, M. Has upwelling strengthened along worldwide coasts over 1982–2010?. Sci. Rep. 5, 1–15 (2015).

  • 40.

    Varela, R., Lima, F. P., Seabra, R., Meneghesso, C. & Gómez-Gesteira, M. Coastal warming and wind-driven upwelling: a global analysis. Sci. Total Environ. 639, 1501–1511 (2018).

  • 41.

    Abrahams, A., Schlegel, R. W. & Smit, A. J. Variation and change of upwelling dynamics detected in the world’s eastern boundary upwelling systems. Front. Mar. Sci. 8, 626411 (2021).

    Article 

    Google Scholar 

  • 42.

    IPCC Climate change 2014: Synthesis report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Vol. 151 (eds Core Writing Team et al.) (IPCC, Geneva, 2014).

    Google Scholar 

  • 43.

    Rykaczewski, R. R. & Dunne, J. P. Enhanced nutrient supply to the California Current Ecosystem with global warming and increased stratification in an earth system model. Geophys. Res. Lett. 37, 1-5 (2010).

  • 44.

    Somero, G. N. et al. What changes in the carbonate system, oxygen, and temperature portend for the northeastern Pacific Ocean: a physiological perspective. Bioscience 66, 14–26 (2016).

    Article 

    Google Scholar 

  • 45.

    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 46.

    Filbee-Dexter, K. et al. Marine heatwaves and the collapse of marginal North Atlantic kelp forests. Sci. Rep. 10, 13388 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Sokolova, I. M., Frederich, M., Bagwe, R., Lannig, G. & Sukhotin, A. A. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar. Environ. Res. 79, 1–15 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Sokolova, I. M. Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr. Comp. Biol. 53, 597–608 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 49.

    Fitzgerald-Dehoog, L., Browning, J. & Allen, B. J. Food and heat stress in the California mussel: evidence for an energetic trade-off between survival and growth. Biol. Bull. 223, 205–216 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 50.

    Ramajo, L. et al. Food supply confers calcifiers resistance to ocean acidification. Sci. Rep. 6, 19374 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Brown, N. E., Bernhardt, J. R., Anderson, K. M. & Harley, C. D. Increased food supply mitigates ocean acidification effects on calcification but exacerbates effects on growth. Sci. Rep. 8, 1–9 (2018).

    Google Scholar 

  • 52.

    Wahle, R. A. & Peckham, S. H. Density-related reproductive trade-offs in the green sea urchin, Strongylocentrotus droebachiensis. Mar. Biol. 134, 127–137 (1999).

    Article 

    Google Scholar 

  • 53.

    Rogers-Bennett, L., Allen, B. L. & Rothaus, D. P. Status and habitat associations of the threatened northern abalone: importance of kelp and coralline algae. Aquat. Conserv. Mar. Freshw. Ecosyst. 21, 573–581 (2011).

    Article 

    Google Scholar 

  • 54.

    Brown, M. B., Edwards, M. S. & Kim, K. Y. Effects of climate change on the physiology of giant kelp, Macrocystis pyrifera, and grazing by purple urchin, Strongylocentrotus purpuratus. Algae 29, 203–215 (2014).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Klinger, T. S. & Lawrence, J. M. Distance perception of food and the effect of food quantity on feeding behavior of Lytechinus variegatus (Lamarck) (Echinodermata: Echinoidea). Mar. Freshw. Behav. Physiol. 11, 327–344 (1985).

    Article 

    Google Scholar 

  • 56.

    Trowbridge, C. D. Establishment of the green alga Codium fragile ssp. tomentosoides on New Zealand rocky shores: current distribution and invertebrate grazers. J. Ecol. 83, 949–965 (1995).

    Article 

    Google Scholar 

  • 57.

    Meidel, S. K. & Scheibling, R. E. Effects of food type and ration on reproductive maturation and growth of the sea urchin Strongylocentrotus droebachiensis. Mar. Biol. 134, 155–166 (1999).

    Article 

    Google Scholar 

  • 58.

    Harianto, J., Nguyen, H. D., Holmes, S. P. & Byrne, M. The effect of warming on mortality, metabolic rate, heat-shock protein response and gonad growth in thermally acclimated sea urchins (Heliocidaris erythrogramma). Mar. Biol. 165, 1–12 (2018).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article 

    Google Scholar 

  • 60.

    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    ADS 
    Article 

    Google Scholar 

  • 61.

    Spicer, J. I., Widdicombe, S., Needham, H. R. & Berge, J. A. Impact of CO2-acidified seawater on the extracellular acid-base balance of the northern sea urchin Strongylocentrotus dröebachiensis. J. Exp. Mar. Biol. Ecol. 407, 19–25 (2011).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Catarino, A. I., Bauwens, M. & Dubois, P. Acid–base balance and metabolic response of the sea urchin Paracentrotus lividus to different seawater pH and temperatures. Environ. Sci. Pollut. Res. 19, 2344–2353 (2012).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Rogers-Bennett, L., Bennett, W. A., Fastenau, H. C. & Dewees, C. M. Spatial variation in red sea urchin reproduction and morphology: implications for harvest refugia. Ecol. Appl. 5, 1171–1180 (1995).

    Article 

    Google Scholar 

  • 64.

    Quinn, J. F., Wing, S. R. & Botsford, L. W. Harvest refugia in marine invertebrate fisheries: models and applications to the red sea urchin, Strongylocentrotus franciscanus. Am. Zool. 33, 537–550 (1993).

    Article 

    Google Scholar 

  • 65.

    Eurich, J. G., Selden, R. L. & Warner, R. R. California spiny lobster preference for urchins from kelp forests: implications for urchin barren persistence. Mar. Ecol. Prog. Ser. 498, 217–225 (2014).

    ADS 
    Article 

    Google Scholar 

  • 66.

    Steneck, R. S., Leland, A., McNaught, D. C. & Vavrinec, J. Ecosystem flips, locks, and feedbacks: the lasting effects of fisheries on Maine’s kelp forest ecosystem. Bull. Mar. Sci. 89, 31–55 (2013).

    Article 

    Google Scholar 

  • 67.

    Gerard, V. A. Growth and utilization of internal nitrogen reserves by the giant kelp Macrocystis pyrifera in a low-nitrogen environment. Mar. Biol. 66(1), 27–35 (1982).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Simonson, E. J., Scheibling, R. E. & Metaxas, A. Kelp in hot water: I. Warming seawater temperature induces weakening and loss of kelp tissue. Mar. Ecol. Prog. Ser. 537, 89–104 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 69.

    Thomsen, M. S. et al. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. 6, 84 (2019).

    Article 

    Google Scholar 

  • 70.

    O’Donnell, M. J., Hammond, L. M. & Hofmann, G. E. Predicted impact of ocean acidification on a marine invertebrate: elevated CO2 alters response to thermal stress in sea urchin larvae. Mar. Biol. 156, 439–446 (2009).

    Article 
    CAS 

    Google Scholar 

  • 71.

    Dupont, S., Dorey, N., Stumpp, M., Melzner, F. & Thorndyke, M. Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Mar. Biol. 160, 1835–1843 (2013).

    CAS 
    Article 

    Google Scholar 

  • 72.

    Marcel, E. V. et al. Variable responses to large-scale climate change in European Parus populations. Proc. R. Soc. B 270, 367–372 (2003).

    Article 

    Google Scholar 

  • 73.

    Parker, L. M., Ross, P. M. & O’Connor, W. A. Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification. Mar. Biol. 158, 689–697 (2011).

    Article 

    Google Scholar 

  • 74.

    Kroeker, K. J., Kordas, R. L. & Harley, C. D. Embracing interactions in ocean acidification research: confronting multiple stressor scenarios and context dependence. Biol. Lett. 13, 20160802 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 75.

    Conor, J. J. Gonad growth in the sea urchin, Strongylocentrotus purpuratus (Stimpson) (Echinodermata: Echinoidea) and the assumptions of gonad index methods. J. Exp. Mar. Biol. Ecol. 10, 89–103 (1972).

    Article 

    Google Scholar 

  • 76.

    Bandstra, L., Hales, B. & Takahashi, T. High-frequency measurements of total CO2: method development and first oceanographic observations. Mar. Chem. 100, 24–38 (2006).

    CAS 
    Article 

    Google Scholar 

  • 77.

    Hales, B., Chipman, D. & Takahashi, T. High-frequency measurement of partial pressure and total concentration of carbon dioxide in seawater using microporous hydrophobic membrane contactors. Limnol. Oceanogr. Methods 2, 356–364 (2004).

    Article 

    Google Scholar 

  • 78.

    Lavigne, H., Epitalon, J. M. & Gattuso, J. P. Seacarb: Seawater Carbonate Chemistry with R. R package version 3.0 http://CRAN.R-project.org/package=seacarb (2011).

  • 79.

    Gattuso, J. P., Epitalon, J. M., Lavigne, H. & Orr, J. Seacarb: seawater carbonate chemistry. R package version 3.2.10. http://CRAN.R-project.org/package=seacarb (2018).

  • 80.

    Murie, K. A. & Bourdeau, P. E. Fragmented kelp forest canopies retain their ability to alter local seawater chemistry. Sci. Rep. 10, 1–13 (2020).

    Article 
    CAS 

    Google Scholar 

  • 81.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2013).


  • Source: Ecology - nature.com

    Taking an indirect path into a bright future

    Sex-biased genes and metabolites explain morphologically sexual dimorphism and reproductive costs in Salix paraplesia catkins