Mueller, U. G. & Sachs, J. L. Engineering microbiomes to improve plant and animal health. Trends Microbiol. 23, 606–617 (2015).
Google Scholar
Gilbert, E. S., Walker, A. W. & Keasling, J. D. A constructed microbial consortium for biodegradation of the organophosphorus insecticide parathion. Appl. Microbiol. Biotechnol. 61, 77–81 (2003).
Google Scholar
Yoshida, S., Ogawa, N., Fujii, T. & Tsushima, S. Enhanced biofilm formation and 3-chlorobenzoate degrading activity by the bacterial consortium of Burkholderia sp. NK8 and Pseudomonas aeruginosa PAO1. J. Appl. Microbiol. 106, 790–800 (2009).
Google Scholar
Piccardi, P., Vessman, B. & Mitri, S. Toxicity drives facilitation between 4 bacterial species. Proc. Natl Acad. Sci. USA 116, 15979–15984 (2019).
Google Scholar
Herrera Paredes, S. et al. Design of synthetic bacterial communities for predictable plant phenotypes. PLoS Biol. 16, e2003962 (2018).
Google Scholar
Minty, J. J. et al. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc. Natl Acad. Sci. USA 110, 14592–14597 (2013).
Google Scholar
Jiang, Y., Dong, W., Xin, F. & Jiang, M. Designing synthetic microbial consortia for biofuel production. Trends Biotechnol. 38, 828–831 (2020).
Google Scholar
Eng, A. & Borenstein, E. Microbial community design: methods, applications, and opportunities. Curr. Opin. Biotechnol. 58, 117–128 (2019).
Google Scholar
Fredrickson, J. K. Ecological communities by design. Science 348, 1425–1427 (2015).
Google Scholar
Sanchez-Gorostiaga, A., Bajić, D., Osborne, M. L., Poyatos, J. F. & Sanchez, A. High-order interactions distort the functional landscape of microbial consortia. PLoS Biol. 17, e3000550 (2019).
Google Scholar
Senay, Y., John, G., Knutie, S. A. & Brandon Ogbunugafor, C. Deconstructing higher-order interactions in the microbiota: a theoretical examination. Preprint at bioRxiv https://doi.org/10.1101/647156 (2019).
Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl Acad. Sci. USA 115, E11951–E11960 (2018).
Google Scholar
Mickalide, H. & Kuehn, S. Higher-order interaction between species inhibits bacterial invasion of a phototroph-predator microbial community. Cell Syst. 9, 521–533.e10 (2019).
Google Scholar
Sanchez, A. Defining higher-order interactions in synthetic ecology: lessons from physics and quantitative genetics. Cell Syst. 9, 519–520 (2019).
Google Scholar
Guo, X. & Boedicker, J. Q. The contribution of high-order metabolic interactions to the global activity of a four-species microbial community. PLoS Comput. Biol. 12, e1005079 (2016).
Google Scholar
Sundarraman, D. et al. Higher-order interactions dampen pairwise competition in the zebrafish gut microbiome. mBio 11, e01667-20 (2020).
Google Scholar
Goldman, R. P. & Brown, S. P. Making sense of microbial consortia using ecology and evolution. Trends Biotechnol. 27, 3–4 (2009).
Google Scholar
Brenner, K., You, L. & Arnold, F. H. Response to Goldman and Brown: Making sense of microbial consortia using ecology and evolution. Trends Biotechnol. 27, 4 (2009).
Google Scholar
Escalante, A. E., Rebolleda-Gómez, M., Benítez, M. & Travisano, M. Ecological perspectives on synthetic biology: insights from microbial population biology. Front. Microbiol. 6, 143 (2015).
Google Scholar
Gilmore, S. P. et al. Top-down enrichment guides in formation of synthetic microbial consortia for biomass degradation. ACS Synth. Biol. 8, 2174–2185 (2019).
Google Scholar
Cortes-Tolalpa, L., Jiménez, D. J., de Lima Brossi, M. J., Salles, J. F. & van Elsas, J. D. Different inocula produce distinctive microbial consortia with similar lignocellulose degradation capacity. Appl. Microbiol. Biotechnol. https://doi.org/10.1007/s00253-016-7516-6 (2016).
Lee, D.-J., Show, K.-Y. & Wang, A. Unconventional approaches to isolation and enrichment of functional microbial consortium – a review. Bioresour. Technol. 136, 697–706 (2013).
Google Scholar
Lazuka, A., Auer, L., O’Donohue, M. & Hernandez-Raquet, G. Anaerobic lignocellulolytic microbial consortium derived from termite gut: enrichment, lignocellulose degradation and community dynamics. Biotechnol. Biofuels 11, 284 (2018).
Google Scholar
Puentes-Téllez, P. E. & Falcao Salles, J. Construction of effective minimal active microbial consortia for lignocellulose degradation. Microb. Ecol. 76, 419–429 (2018).
Google Scholar
He, X., McLean, J. S., Guo, L., Lux, R. & Shi, W. The social structure of microbial community involved in colonization resistance. ISME J. 8, 564–574 (2014).
Google Scholar
Jung, J., Philippot, L. & Park, W. Metagenomic and functional analyses of the consequences of reduction of bacterial diversity on soil functions and bioremediation in diesel-contaminated microcosms. Sci. Rep. 6, 23012 (2016).
Google Scholar
Franklin, R. B. & Mills, A. L. Structural and functional responses of a sewage microbial community to dilution-induced reductions in diversity. Microb. Ecol. 52, 280–288 (2006).
Google Scholar
Kang, D. et al. Enrichment and characterization of an environmental microbial consortium displaying efficient keratinolytic activity. Bioresour. Technol. 270, 303–310 (2018).
Google Scholar
Goodnight, C. J. Evolution in metacommunities. Phil. Trans. R. Soc. B 366, 1401–1409 (2011).
Google Scholar
Swenson, W., Wilson, D. S. & Elias, R. Artificial ecosystem selection. Proc. Natl Acad. Sci. USA 97, 9110–9114 (2000).
Google Scholar
Jochum, M. D., McWilliams, K. L., Pierson, E. A. & Jo, Y.-K. Host-mediated microbiome engineering (HMME) of drought tolerance in the wheat rhizosphere. PLoS ONE 14, e0225933 (2019).
Google Scholar
Mueller, U. G. et al. Artificial microbiome-selection to engineer microbiomes that confer salt-tolerance to plants. Preprint at bioRxiv https://doi.org/10.1101/081521 (2016).
Panke-Buisse, K., Poole, A. C., Goodrich, J. K., Ley, R. E. & Kao-Kniffin, J. Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J. 9, 980–989 (2015).
Google Scholar
Panke-Buisse, K., Lee, S. & Kao-Kniffin, J. Cultivated sub-populations of soil microbiomes retain early flowering plant trait. Microb. Ecol. https://doi.org/10.1007/s00248-016-0846-1 (2016).
Arora, J., Mars Brisbin, M. A. & Mikheyev, A. S. Effects of microbial evolution dominate those of experimental host-mediated indirect selection. PeerJ 8, e9350 (2020).
Google Scholar
Swenson, W., Arendt, J. & Wilson, D. S. Artificial selection of microbial ecosystems for 3-chloroaniline biodegradation. Environ. Microbiol. 2, 564–571 (2000).
Google Scholar
Wright, R. J., Gibson, M. I. & Christie-Oleza, J. A. Understanding microbial community dynamics to improve optimal microbiome selection. Microbiome 7, 85 (2019).
Google Scholar
Blouin, M., Karimi, B., Mathieu, J. & Lerch, T. Z. Levels and limits in artificial selection of communities. Ecol. Lett. 18, 1040–1048 (2015).
Google Scholar
Raynaud, T., Devers, M., Spor, A. & Blouin, M. Effect of the reproduction method in an artificial selection experiment at the community level. Front. Ecol. Evol. 7, 416 (2019).
Google Scholar
Chang, C.-Y., Osborne, M. L., Bajic, D. & Sanchez, A. Artificially selecting bacterial communities using propagule strategies. Evolution https://doi.org/10.1111/evo.14092 (2020).
Arias-Sánchez, F. I., Vessman, B. & Mitri, S. Artificially selecting microbial communities: if we can breed dogs, why not microbiomes? PLoS Biol. 17, e3000356 (2019).
Google Scholar
Day, M. D., Beck, D. & Foster, J. A. Microbial communities as experimental units. BioScience 61, 398–406 (2011).
Google Scholar
Wade, M. J. Group selections among laboratory populations of Tribolium. Proc. Natl Acad. Sci. USA 73, 4604–4607 (1976).
Google Scholar
Wade, M. J. An experimental study of group selection. Evolution 31, 134–153 (1977).
Google Scholar
Wade, M. J. A critical review of the models of group selection. Q. Rev. Biol. 53, 101–114 (1978).
Google Scholar
Goodnight, C. J. Experimental studies of community evolution I: The response to selection at the community level. Evolution 44, 1614–1624 (1990).
Google Scholar
Guo, X. & Boedicker, J. High-order interactions between species strongly influence the activity of microbial communities. Biophys. J. 110, 143a (2016).
Google Scholar
Stein, R. R. et al. Computer-guided design of optimal microbial consortia for immune system modulation. eLife 7, e30916 (2018).
Google Scholar
Arnold, F. H. Innovation by evolution: bringing new chemistry to life (Nobel lecture). Angew. Chem. Int. Ed. 58, 14420–14426 (2019).
Google Scholar
Tracewell, C. A. & Arnold, F. H. Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Curr. Opin. Chem. Biol. 13, 3–9 (2009).
Google Scholar
Williams, H. T. P. & Lenton, T. M. Artificial selection of simulated microbial ecosystems. Proc. Natl Acad. Sci. USA 104, 8918–8923 (2007).
Google Scholar
Williams, H. T. P. & Lenton, T. M. in Advances in Artificial Life ECAL 2007. Lecture Notes in Computer Science, vol. 4648 (eds Almeida e Costa, F. et al.) 93–102 (Springer, 2007).
Doulcier, G., Lambert, A., De Monte, S. & Rainey, P. B. Eco-evolutionary dynamics of nested Darwinian populations and the emergence of community-level heredity. eLife 9, e53433 (2020).
Google Scholar
Xie, L., Yuan, A. E. & Shou, W. Simulations reveal challenges to artificial community selection and possible strategies for success. PLoS Biol. 17, e3000295 (2019).
Google Scholar
Wilson, D. S. Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology 73, 1984–2000 (1992).
Google Scholar
Marsland, R. III et al. Available energy fluxes drive a transition in the diversity, stability, and functional structure of microbial communities. PLoS Comput. Biol. 15, e1006793 (2019).
Google Scholar
Marsland, R., Cui, W., Goldford, J. & Mehta, P. The Community Simulator: a Python package for microbial ecology. PLoS ONE 15, e0230430 (2020).
Google Scholar
Marsland, R. III, Cui, W. & Mehta, P. A minimal model for microbial biodiversity can reproduce experimentally observed ecological patterns. Sci. Rep. 10, 3308 (2020).
Google Scholar
Advani, M., Bunin, G. & Mehta, P. Statistical physics of community ecology: a cavity solution to MacArthur’s consumer resource model. J. Stat. Mech. 2018, 033406 (2018).
Google Scholar
Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).
Google Scholar
Lu, N., Sanchez-Gorostiaga, A., Tikhonov, M. & Sanchez, A. Cohesiveness in microbial community coalescence. Preprint at bioRxiv https://doi.org/10.1101/282723 (2018).
Faith, J. J., Ahern, P. P., Ridaura, V. K., Cheng, J. & Gordon, J. I. Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice. Sci. Transl. Med. 6, 220ra11 (2014).
Google Scholar
Estrela, S. et al. Metabolic rules of microbial community assembly. Preprint at bioRxiv https://doi.org/10.1101/2020.03.09.984278 (2020).
Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 0109 (2017).
Google Scholar
Venturelli, O. S. et al. Deciphering microbial interactions in synthetic human gut microbiome communities. Mol. Syst. Biol. 14, e8157 (2018).
Google Scholar
Hall, B. G. Experimental evolution of a new enzymatic function. II. Evolution of multiple functions for ebg enzyme in E. coli. Genetics 89, 453–465 (1978).
Google Scholar
Smith, G. P. & Petrenko, V. A. Phage display. Chem. Rev. 97, 391–410 (1997).
Google Scholar
Bloom, J. D. & Arnold, F. H. In the light of directed evolution: pathways of adaptive protein evolution. Proc. Natl Acad. Sci. USA 106, 9995–10000 (2009).
Google Scholar
Romero, P. A., Krause, A. & Arnold, F. H. Navigating the protein fitness landscape with Gaussian processes. Proc. Natl Acad. Sci. USA 110, E193–E201 (2013).
Google Scholar
Ho, K.-L., Lee, D.-J., Su, A. & Chang, J.-S. Biohydrogen from cellulosic feedstock: dilution-to-stimulation approach. Int. J. Hydrog. Energy 37, 15582–15587 (2012).
Google Scholar
Shepherd, E. S., DeLoache, W. C., Pruss, K. M., Whitaker, W. R. & Sonnenburg, J. L. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 557, 434–438 (2018).
Google Scholar
Ting, S.-Y. et al. Targeted depletion of bacteria from mixed populations by programmable adhesion with antagonistic competitor cells. Cell Host Microbe https://doi.org/10.1016/j.chom.2020.05.006 (2020).
Sheth, R. U., Cabral, V., Chen, S. P. & Wang, H. H. Manipulating bacterial communities by in situ microbiome engineering. Trends Genet. 32, 189–200 (2016).
Google Scholar
Lemon, K. P., Armitage, G. C., Relman, D. A. & Fischbach, M. A. Microbiota-targeted therapies: an ecological perspective. Sci. Transl. Med. 4, 137rv5 (2012).
Google Scholar
Harcombe, W. R. & Bull, J. J. Impact of phages on two-species bacterial communities. Appl. Environ. Microbiol. 71, 5254–5259 (2005).
Google Scholar
Chan, B. K. et al. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol. Med. Public Health 2018, 60–66 (2018).
Google Scholar
Rillig, M. C., Tsang, A. & Roy, J. Microbial community coalescence for microbiome engineering. Front. Microbiol. 7, 1967 (2016).
Google Scholar
Sierocinski, P. et al. A single community dominates structure and function of a mixture of multiple methanogenic communities. Curr. Biol. 27, 3390–3395.e4 (2017).
Google Scholar
Tilman, D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80, 1455–1474 (1999).
Shade, A. et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3, 417 (2012).
Google Scholar
Kang, D. et al. Construction of simplified microbial consortia to degrade recalcitrant materials based on enrichment and dilution-to-extinction cultures. Front. Microbiol. 10, 3010 (2019).
Google Scholar
Zanaroli, G. et al. Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms. Microb. Cell Factories 9, 10 (2010).
Google Scholar
Peter, H. et al. Function-specific response to depletion of microbial diversity. ISME J. 5, 351–361 (2011).
Google Scholar
Pacheco, A. R., Moel, M. & Segrè, D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat. Commun. 10, 103 (2019).
Google Scholar
West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4, 597–607 (2006).
Google Scholar
Scheuerl, T. et al. Bacterial adaptation is constrained in complex communities. Nat. Commun. 11, 754 (2020).
Google Scholar
Lewontin, R. C. The units of selection. Annu. Rev. Ecol. Syst. 1, 1–18 (1970).
Google Scholar
Marsland, R., Cui, W., Goldford, J. & Mehta, P. The Community Simulator: a Python package for microbial ecology. PLoS ONE 15, e0230430 (2020).
Google Scholar
Shoemaker, W. R., Locey, K. J. & Lennon, J. T. A macroecological theory of microbial biodiversity. Nat. Ecol. Evol. 1, 0107 (2017).
Google Scholar
Degnan, P. H., Taga, M. E. & Goodman, A. L. Vitamin B12 as a modulator of gut microbial ecology. Cell Metab. 20, 769–778 (2014).
Google Scholar
Degnan, P. H., Barry, N. A., Mok, K. C., Taga, M. E. & Goodman, A. L. Human gut microbes use multiple transporters to distinguish vitamin B12 analogs and compete in the gut. Cell Host Microbe 15, 47–57 (2014).
Google Scholar
Source: Ecology - nature.com