in

ENSO feedback drives variations in dieback at a marginal mangrove site

  • 1.

    McPhaden, M. J. & Busalacchi, A. J. The tropical ocean-global atmosphere observing system: A Decade of progress research. Oceans. https://doi.org/10.1029/97JC02906 (1998).

  • 2.

    Osland, M. J. et al. Climatic controls on the global distribution, abundance, and species richness of mangrove forests. Ecol. Monogr. 87(2), 341–359 (2017).

    Article 

    Google Scholar 

  • 3.

    Adame, M. F. et al. Mangroves in arid regions: Ecology, threats, and opportunities. Estuar. Coast. Shelf Sci. 1, 106796 (2020).

    Google Scholar 

  • 4.

    Asbridge, E. F. et al. Assessing the distribution and drivers of mangrove dieback in Kakadu National Park, Northern Australia. Estuar. Coast. Shelf Sci. 228, 106353 (2019).

    Article 

    Google Scholar 

  • 5.

    Lovelock, C. E. et al. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Front. Ecol. Environ. 15(5), 257–265 (2017).

    Article 

    Google Scholar 

  • 6.

    Spalding, M. D. et al. The role of ecosystems in coastal protection: adapting to climate change and coastal hazards. Ocean. Coast. Manag. 90, 50–57 (2014).

  • 7.

    Sippo, J. Z., Lovelock, C. E., Santos, I. R., Sanders, C. J. & Maher, D. T. Mangrove mortality in a changing climate: An overview. Estuar. Coast. Shelf Sci. 215, 241–249 (2018).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Mafi-Gholami, D., Zenner, E. K., & Jaafari, A. Mangrove regional feedback to sea level rise and drought intensity at the end of the 21st century. Ecol. Indic. 110, 105972 (2020).

    Article 

    Google Scholar 

  • 9.

    Jump, A. S., & Penuelas J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8(9), 1010–1020 (2005).

    Article 

    Google Scholar 

  • 10.

    Jimenez, J. A., Lugo, A. E. & Cintron, G. Tree mortality in mangrove forests. Biotropica 17, 177–185 (1985).

    Article 

    Google Scholar 

  • 11.

    Xie, S.-P. et al. Indo-western pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci. 33(4), 411–432 (2016).

    Article 

    Google Scholar 

  • 12.

    Hamlington, B. D. et al. An ongoing shift in Pacific Ocean sea level. J. Geophys/ Res. Oceans 121, 5084–5097 (2016).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Merrifield, M. A., Thompson, P. R. & Lander, M. Multidecadal sea level anomalies and trends in the western tropical Pacific. Geophys. Res. Lett. 39, 2–6 (2012).

    Article 

    Google Scholar 

  • 14.

    Godfrey, J. S. & Ridgway, K. R. The large-scale environment of the poleward-flowing Leeuwin Current, Western Australia: Longshore steric height gradients, wind stresses and geostrophic flow. J. Phys. Oceanogr. 15, 481–495 (1985).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Drexler, J. Z. & Ewel, K. C. Wetland complex linked references are available on JSTOR for this article: Effect of the 1997–1998 ENSO-related drought on hydrology and salinity in a Micronesian wetland complex. Estuaries 24, 347–356 (2001).

    Article 

    Google Scholar 

  • 16.

    Duke, N. C. et al. Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: A severe ecosystem response, coincidental with an unusually extreme weather event. Mar. Freshw. Res. 68(10), 1816–1829 (2017).

    Article 

    Google Scholar 

  • 17.

    Cai, W. et al. More extreme swings of the South Pacific convergence zone due to greenhouse warming. Nature 488, 365–369 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Wilson, S. G., Taylor, J. G., & Pearce, A. F. The Seasonal Aggregation of Whale Sharks at Ningaloo Reef, Western Australia: Currents, Migrations and the El Niño/Southern Oscillation. Environmental Biology of Fishes. https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1023/A:1011069914753&casa_token=55v4NHJmcDcAAAAA:owpASeBazqNzQzH7Z9xJI0BOtHzNZMvjTiJHRjLGIFCWzhyiWwMvYJUU8cloH46JDWCSZ7XOhu_CZuzZ0w. (2001).

  • 19.

    Lovelock, C. E., Feller, I. C., Reef, R., Hickey, S. & Ball, M. C. Mangrove dieback during fluctuating sea levels. Sci. Rep. 1, 1–8 (2017).

    Google Scholar 

  • 20.

    Giri, C. Observation and monitoring of mangrove forests using remote sensing: Opportunities and challenges. Remot. Sens. 8, 783 (2016).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Fatoyinbo, T. E., Simard, M., Washington-Allen, R. A. & Shugart, H. H. Landscape-scale extent, height, biomass, and carbon estimation of Mozambique’s mangrove, forests with Landsat ETM+ and Shuttle Radar Topography Mission elevation data. J. Geophys. Res. Biogeosci. 113, 1–13 (2008).

    Article 

    Google Scholar 

  • 22.

    Rodriguez, W., Feller, I. C. & Cavanaugh, K. C. Spatio-temporal changes of a mangrove saltmarsh ecotone in the northeastern coast of Florida, USA. Glob. Ecol. Conserv. 7, 245–261 (2016).

    Article 

    Google Scholar 

  • 23.

    Bureau of Meteorology. Record-Breaking La Niña Events. Australian Government. http://www.bom.gov.au/climate/enso/history/La-Nina-2010-12.pdf (2012).

  • 24.

    Jensen, J. R. et al. The measurement of mangrove characteristics in southwest Florida using spot multispectral data. Geocarto Int. 6, 13–21 (1991).

    Article 

    Google Scholar 

  • 25.

    Eslami-Andargoli, L., Dale, P., Sipe, N. & Chaseling, J. Mangrove expansion and rainfall patterns in Moreton Bay, Southeast Queensland, Australia. Estuar. Coast. Shelf Sci. 85, 292–298 (2009).

    ADS 
    Article 

    Google Scholar 

  • 26.

    Hicks, W., Fitzpatrick, R. W., & Bowman, G. (2003) Managing coastal acid sulfate soils: the East Trinity example. in Advances in regolith: Proceedings of the CRC LEME regional regolith symposia. CRC LEME, Bentley 174–177.

  • 27.

    Harris, N. L. et al. Using spatial statistics to identify emerging hot spots of forest loss. Environ. Res. Lett. 12, 024012 (2017).

    ADS 
    Article 

    Google Scholar 

  • 28.

    Bryan-Brown, D. N. et al. Global trends in mangrove forest fragmentation. Sci. Rep. 10(1), 7117 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 29.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the anthropocene. Science 359(6371), 80–83 (2018).

  • 30.

    Wang, H. J., Zhang, R. H., Cole, J. & Chavez, F. El Niño and the related phenomenon southern oscillation (ENSO): The largest signal in interannual climate variation. Proc. Natl. Acad. Sci. USA. 96(20), 11071–11072 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 31.

    Berg, A. et al. Land-atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Chang. 6, 869–874 (2016).

    ADS 
    Article 

    Google Scholar 

  • 32.

    Perry, S. J., McGregor, S., Gupta, A. S. & England, M. H. Future changes to El Niño-southern oscillation temperature and precipitation teleconnections. Geophys. Res. Lett. 44(20), 10608–10616 (2017).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Osland, M. J. et al. Beyond just sea-level rise: Considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change. Glob. Change Biol. 22, 1–11 (2016).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Jentsch, A. & Beierkuhnlein, C. Research frontiers in climate change: Effects of extreme meteorological events on ecosystems. C.R. Geosci. 340, 621–628 (2008).

    ADS 
    Article 

    Google Scholar 

  • 35.

    Chander, G., Markham, B. L. & Helder, D. L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 113, 893–903 (2009).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Landsat 7 (L7) Data Users Handbook. USGS. https://prd-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/atoms/files/LSDS-1927_L7_Data_Users_Handbook-v2.pdf. (2009).

  • 37.

    Landsat 8 (L8) Data Users Handbook. USGS. https://prd-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/atoms/files/LSDS-1574_L8_Data_Users_Handbook-v5.0.pdf. (2009).

  • 38.

    Story, M. & Congalton, R. G. Accuracy assessment: A user’s perspective. Photogramm. Eng. Remote. Sens. 52, 397–399 (1986).

    Google Scholar 

  • 39.

    Moore, C. et al. Improving essential fish habitat designation to support sustainable ecosystem-based fisheries management. Mar. Policy 69, 32–41 (2016).

  • 40.

    Burnham, K. P., & Anderson, R. A practical information-theoretic approach. in Model Selection and Multimodel Inference 2. http://sutlib2.sut.ac.th/sut_contents/H79182.pdf.

  • 41.

    Burnham, K. P., & Anderson, D. R. Practical use of the information-theoretic approach. in Model Selection and Inference: A Practical Information-Theoretic Approach (eds. Burnham K. P. & Anderson D. R.) 75–117 (New York, NY, Springer, 1998).

  • 42.

    Cornforth, W. A., Fatoyinbo, T. E., Freemantle, T. P. & Pettorelli, N. Advanced land observing satellite phased array type L-Band SAR (ALOS PALSAR) to inform the conservation of mangroves: Sundarbans as a case study. Remot. Sens. 5, 224–237 (2013).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Giri, C., Pengra, B., Zhu, Z., Singh, A. & Tieszen, L. L. Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuar. Coast. Shelf Sci. 73, 91–100 (2007).

    ADS 
    Article 

    Google Scholar 

  • 44.

    Long, J., Giri, C., Primavera, J. & Trivedi, M. Damage and recovery assessment of the Philippines ’ mangroves following Super Typhoon Haiyan. MPB 109, 734–743 (2016).

    CAS 

    Google Scholar 

  • 45.

    Satyanarayana, B., Mohamad, K. A., Idris, I. F., Husain, M.-L. & Dahdouh-Guebas, F. Assessment of mangrove vegetation based on remote sensing and ground-truth measurements at Tumpat, Kelantan Delta, East Coast of Peninsular Malaysia. Int. J. Remot. Sens. 32, 1635–1650 (2011).

    Article 

    Google Scholar 

  • 46.

    Almahasheer, H., Aljowair, A., Duarte, C. M. & Irigoien, X. Decadal stability of red sea mangroves. Estuar. Coast. Shelf Sci. 169, 164–172 (2016).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Negative emissions, positive economy

    Individual US diets show wide variation in water scarcity footprints