in

Environmental and spatial risk factors for the larval habitats of Plasmodium knowlesi vectors in Sabah, Malaysian Borneo

  • 1.

    Fornace, K. M. et al. Exposure and infection to Plasmodium knowlesi in case study communities in Northern Sabah, Malaysia and Palawan, The Philippines. PLoS Negl. Trop. Dis. 12, e0006432 (2018).

    Article 

    Google Scholar 

  • 2.

    Singh, B. et al. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 363, 1017–1024 (2004).

    Article 

    Google Scholar 

  • 3.

    Chin, A. Z. et al. Malaria elimination in Malaysia and the rising threat of Plasmodium knowlesi. J. Physiol. Anthropol. https://doi.org/10.1186/s40101-020-00247-5 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Cooper, D. J. et al. Plasmodium knowlesi Malaria in Sabah, Malaysia, 2015–2017: Ongoing increase in incidence despite nearelimination of the human-only plasmodium species. Clin. Infect. Dis. 70, 361–367 (2020).

    Article 

    Google Scholar 

  • 5.

    William, T. et al. Increasing incidence of Plasmodium knowlesi malaria following control of P. falciparum and P. vivax malaria in Sabah, Malaysia. PLoS Negl. Trop. Dis. 7, e2026 (2013).

    Article 

    Google Scholar 

  • 6.

    Fornace, K. M. et al. Association between landscape factors and spatial patterns of Plasmodium knowlesi infections in Sabah, Malaysia. Emerg. Infect. Dis. 22, 201–208 (2016).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Gunggut, H., Saufi, D. S. N. S. A. M., Zaaba, Z. & Liu, M.S.-M. Where have all the forests gone? Deforestation in land below the wind. Procedia Soc. Behav. Sci. 153, 363–369 (2014).

    Article 

    Google Scholar 

  • 8.

    Brock, P. M. et al. Predictive analysis across spatial scales links zoonotic malaria to deforestation. Proc. R. Soc. B Biol. Sci. 286, 20182913 (2019).

    Article 

    Google Scholar 

  • 9.

    World Health Organization. WHO|Larval Source Management: A Supplementary Measure for Malaria Vector Control (WHO, 2013).

    Google Scholar 

  • 10.

    Wong, M. L. et al. Incrimination of Anopheles balabacensis as the vector for simian malaria in Kudat Division, Sabah, Malaysia. J. Microbiol. Immunol. Infect. 48, S47–S48 (2015).

    Article 

    Google Scholar 

  • 11.

    Vythilingam, I. & Hii, J. Simian malaria parasites: Special emphasis on Plasmodium knowlesi and their anopheles vectors in Southeast Asia. in Anopheles mosquitoes: New insights into malaria vectors (InTech, 2013). https://doi.org/10.5772/54491.

    Article 

    Google Scholar 

  • 12.

    Loh, E., Murray, K., Nava, K., Aguirre, A. & Daszak, A. Evaluating the links between biodiversity, land-use change, and infectious disease emergence. in Tropical Conservation (eds. Aguirre, A. & Sukumar, R.) 79–88. (Oxford, 2016).

    Google Scholar 

  • 13.

    Brant, H. L. et al. Vertical stratification of adult mosquitoes (Diptera: Culicidae) within a tropical rainforest in Sabah, Malaysia. Malar. J. 15, 1–10 (2016).

    Article 

    Google Scholar 

  • 14.

    Chua, T. H., Manin, B. O., Vythilingam, I., Fornace, K. & Drakeley, C. J. Effect of different habitat types on abundance and biting times of Anopheles balabacensis Baisas (Diptera: Culicidae) in Kudat district of Sabah, Malaysia. Parasit. Vectors 12, 364 (2019).

    Article 

    Google Scholar 

  • 15.

    Wong, M. L. et al. Seasonal and spatial dynamics of the primary vector of Plasmodium knowlesi within a major transmission focus in Sabah, Malaysia. PLoS Negl. Trop. Dis. 9, e0004153 (2015).

    Article 

    Google Scholar 

  • 16.

    Brown, R. et al. Human exposure to zoonotic malaria vectors in village, farm and forest habitats in Sabah, Malaysian Borneo. PLoS Negl. Trop. Dis. 14, 1–18 (2020).

    Article 

    Google Scholar 

  • 17.

    Yasuoka, J. & Levins, R. Impact of deforestation and agricultural development on anopheline ecology and malaria epidemiology. Am. J. Trop. Med. Hyg. 76, 450–460 (2007).

    Article 

    Google Scholar 

  • 18.

    Manin, B. O. et al. Investigating the contribution of peri-domestic transmission to risk of zoonotic malaria infection in humans. PLoS Negl. Trop. Dis. 10, e0000506 (2016).

    Article 

    Google Scholar 

  • 19.

    Rohani, A. et al. Characterization of the larval breeding sites of Anopheles balabacensis (Baisas), in Kudat, Sabah Malaysia. Southeast Asian. J. Trop. Med. Public Health 49, 566–579 (2018).

    Google Scholar 

  • 20.

    Ageep, T. B. et al. Spatial and temporal distribution of the malaria mosquito Anopheles arabiensis in northern Sudan: Influence of environmental factors and implications for vector control. Malar. J. 8, 123 (2009).

    Article 

    Google Scholar 

  • 21.

    Roleček, J., Chytrý, M., Hájek, M., Lvončík, S. & Tichý, L. Sampling design in large-scale vegetation studies: Do not sacrifice ecological thinking to statistical purism!. Folia Geobot. 42, 199–208 (2007).

    Article 

    Google Scholar 

  • 22.

    Bellier, E., Monestiez, P., Durbec, J.-P. & Candau, J.-N. Identifying spatial relationships at multiple scales: Principal coordinates of neighbour matrices (PCNM) and geostatistical approaches. Ecography 30, 385–399 (2007).

    Article 

    Google Scholar 

  • 23.

    Brock, P. M. et al. Plasmodium knowlesi transmission: Integrating quantitative approaches from epidemiology and ecology to understand malaria as a zoonosis. Parasitology 143, 389–400 (2016).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Fornace, K. M., Drakeley, C. J., William, T., Espino, F. & Cox, J. Mapping infectious disease landscapes: Unmanned aerial vehicles and epidemiology. Trends Parasitol. 30, 514–519 (2014).

    Article 

    Google Scholar 

  • 25.

    GES DISC. Tropical Rainfall Measurement Mission (TRMM). TRMM (TMPA) Rainfall Estimate L3 3 hour 0.25 degree x 0.25 degree V7, Greenbelt. https://doi.org/10.5067/TRMM/TMPA/3H/7 (2011).

    Article 

    Google Scholar 

  • 26.

    Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 NASA EOSDIS Land Processes DAAC. USGS 5, 2002–2015 (2015).

    Google Scholar 

  • 27.

    Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006. NASA EOSDIS Land Processes DAAC. NASA EOSDIS Land Processes DAAC. 5, 2002–2015. https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).

    Article 

    Google Scholar 

  • 28.

    NASA/METI/AIST/Japan Spacesystems, and U. S. /Japa. A. S. T. ASTER Global Digital Elevation Model V003. NASA EOSDIS Land Processes DAAC. https://lpdaac.usgs.gov/products/astgtmv003 (2019).

  • 29.

    Fornace, K. M. et al. Environmental risk factors and exposure to the zoonotic malaria parasite Plasmodium knowlesi across northern Sabah, Malaysia: A population-based cross-sectional survey. Lancet Planet. Heal. 3, e179–e186 (2019).

    Article 

    Google Scholar 

  • 30.

    Stark, D. J. et al. Long-tailed macaque response to deforestation in a plasmodium knowlesi-endemic area. EcoHealth 16, 638–646 (2019).

    Article 

    Google Scholar 

  • 31.

    Davidson, G., Chua, T. H., Cook, A., Speldewinde, P. & Weinstein, P. Defining the ecological and evolutionary drivers of Plasmodium knowlesi transmission within a multi-scale framework. Malar. J. 18, 1–13 (2019).

    Article 

    Google Scholar 

  • 32.

    Diuk-Wasser, M. A. et al. Effect of rice cultivation patterns on malaria vector abundance in rice-growing villages in Mali. Am. J. Trop. Med. Hyg. 76, 869–874 (2007).

    Article 

    Google Scholar 

  • 33.

    Stefani, A., Roux, E., Fotsing, J. M. & Carme, B. Studying relationships between environment and malaria incidence in Camopi (French Guiana) through the objective selection of buffer-based landscape characterisations. Int. J. Health Geogr. 10, 65 (2011).

    Article 

    Google Scholar 

  • 34.

    Wang, X., Blanchet, F. G. & Koper, N. Measuring habitat fragmentation: An evaluation of landscape pattern metrics. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.12198 (2014).

    Article 

    Google Scholar 

  • 35.

    McGarigal, K., Cushman, S. & Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html. https://doi.org/10.1049/oap-cired.2017.1227 (2012).

    Book 

    Google Scholar 

  • 36.

    TuckerLima, J. M., Vittor, A., Rifai, S. & Valle, D. Does deforestation promote or inhibit malaria transmission in the Amazon? A systematic literature review and critical appraisal of current evidence. Philos. Trans. R. Soc. B. 372, 20160125 (2017).

    Article 

    Google Scholar 

  • 37.

    Sallum, M. A. M., Peyton, E. L. & Wilkerson, R. C. Six new species of the Anopheles leucosphyrus group, reinterpretation of An. elegans and vector implications. Med. Vet. Entomol. 19, 158–199 (2005).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Stoops, C. A. et al. Remotely-sensed land use patterns and the presence of Anopheles larvae (Diptera: Culicidae) in Sukabumi, West Java, Indonesia. J. Vector Ecol. 33, 30–39 (2008).

    Article 

    Google Scholar 

  • 39.

    Singh, J. & Tham, A. S. Case history on malaria vector control through the application of environmental management in Malaysia. World Health Org. 88, 1–70 (1988).

    Google Scholar 

  • 40.

    Tangena, J. A. A., Thammavong, P., Wilson, A. L., Brey, P. T. & Lindsay, S. W. Risk and control of mosquito-borne diseases in southeast asian rubber plantations. Trends Parasitol. 32, 402–415 (2016).

    Article 

    Google Scholar 

  • 41.

    Kaewwaen, W. & Bhumiratana, A. Landscape ecology and epidemiology of malaria associated with rubber plantations in Thailand: Integrated approaches to malaria ecotoping. Interdiscipl. Perspect. Infect. Dis. 2015, 1–15 (2015).

    Article 

    Google Scholar 

  • 42.

    Foley, D. H., Torres, E. P. & Mueller, I. Stream-bank shade and larval distribution of the Philippine malaria vector Anopheles flavirostris. Med. Vet. Entomol. 16, 347–355 (2002).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Service, M. W. & Service, M. W. Sampling the Larval Population. in Mosquito Ecology 75–209 (Springer, 1993). https://doi.org/10.1007/978-94-015-8113-4_2.

    Article 
    MATH 

    Google Scholar 

  • 44.

    Sallum, M. A. M., Peyton, E. L., Harrison, B. A. & Wilkerson, R. C. Revision of the Leucosphyrus group of Anopheles (Cellia) (Diptera, Culicidae). Rev. Bras. Entomol. 49, 1–152 (2005).

    Article 

    Google Scholar 

  • 45.

    Rattanarithikul, R., Harrison, B. A., Harbach, R. E., Panthusiri, P. & Coleman, R. E. Illustrated keys to the mosquitoes of Thailand IV. Anopheles. J. Trop. Med. Public Health 37, 1–26 (2006).

    Google Scholar 

  • 46.

    R Core Team. R: The R Project for Statistical Computing. https://www.r-project.org/ (2020).

  • 47.

    Borremans, B., Faust, C., Manlove, K. R., Sokolow, S. H. & Lloyd-Smith, J. O. Cross-species pathogen spillover across ecosystem boundaries: Mechanisms and theory. Philos. Trans. R. Soc. B https://doi.org/10.1098/rstb.2018.0344 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Accelerating AI at the speed of light

    Exploring the future of humanitarian technology