Moller, H. Lessons for invasion theory from social insects. Biol. Conserv. 78, 125–142 (1996).
Google Scholar
Pimentel, D. et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 84, 1–20 (2001).
Google Scholar
Kenis, M. et al. Ecological effects of invasive alien insects. Biol. Invasion 11, 21–45 (2009).
Google Scholar
McGlynn, T. P. The worldwide transfer of ants: Geographical distribution and ecological invasions. J. Biogeog. 26, 535–548 (1999).
Google Scholar
Morrison, L. W., Porter, S. D., Daniels, E. & Korzukhin, M. D. Potential global range expansion of the invasive fire ant, Solenopsis invicta. Biol. Invasions 6, 183–191 (2004).
Google Scholar
Fitzpatrick, M. C., Weltzin, J. F., Sanders, N. J. & Dunn, R. R. The biogeography of prediction error: Why does the introduced range of the fire ant over-predict its native range?. Global Ecol. Biogeog. 16, 24–33 (2007).
Google Scholar
Bertelsmeier, C., Luque, G. M., Hoffmann, B. D. & Courchamp, F. Worldwide ant invasions under climate change. Biodivers. Conserv. 24, 117–128 (2015).
Google Scholar
Rowles, A. D. & O’Dowd, D. J. Impacts of the invasive Argentine ant on native ants and other invertebrates in coastal scrub in south-eastern Australia. Austral. Ecol. 34, 239–248 (2009).
Google Scholar
Naumann, K. & Higgins, R. J. The European fire ant (Hymenoptera: Formicidae) as an invasive species: Impact on local ant species and other epigaeic arthropods. Can. Entomol. 147, 592–601 (2015).
Google Scholar
Uchida, S. et al. Effects of an invasive ant on land snails in the Ogasawara Islands. Conserv. Biol. 30, 1330–1337 (2016).
Google Scholar
Helanterä, H., Strassmann, J. E., Carrillo, J. & Queller, D. C. Unicolonial ants: Where do they come from, what are they and where are they going?. Trends Ecol. Evol. 24, 341–349 (2009).
Google Scholar
Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D. & Case, T. J. The causes and consequences of ant invasions. Ann. Rev. Ecol. Syst. 33, 181–233 (2002).
Google Scholar
Stafford, C. T. Hypersensitivity to fire ant venom. Ann. Allerg. Asthma Im. 77, 87–99 (1996).
Google Scholar
Kemp, S. F., deShazo, R. D., Moffitt, J. E., Williams, D. F. & Buhner, W. A. II. Expanding habitat of the imported fire ant (Solenopsis invicta): A public health concern. J. Allergy Clin. Immun. 105, 683–691 (2000).
Google Scholar
Morrison, J. E. Jr., Williams, D. F., Oi, D. H. & Potter, K. N. Damage to dry crop seed by red imported fire ant (Hymenoptera: Formicidae). J. Econ. Entomol. 90, 218–222 (1997).
Google Scholar
Mikissa, J. B., Jeffery, K., Fresneau, D. & Mercier, J. L. Impact of an invasive alien ant, Wasmannia auropunctata Roger., on a specialised plant-ant mutualism, Barteria fistulosa Mast. and Tetraponera aethiops F. Smith., in a Gabon forest. Ecol. Entomol. 38, 580–584 (2013).
Google Scholar
Keller, R. P., Lodge, D. M. & Finnoff, D. C. Risk assessment for invasive species produces net bioeconomic benefits. Proc. Natl. Acad. Sci. 104, 203–207 (2007).
Google Scholar
Hulme, P. E., Nentwig, W., Pyšek, P. & Vilà, M. Common market, shared problems: Time for a coordinated response to biological invasions in Europe. Neobiota 8, 3–19 (2009).
Pluess, T. et al. Which factors affect the success or failure of eradication campaigns against Alien species?. PLoS One 7, 48157 (2012).
Google Scholar
Sakamoto, Y., Kumagai, N. H. & Goka, K. Declaration of local chemical eradication of the Argentine ant: Bayesian estimation with a multinomial-mixture model. Sci. Rep. 7, 1–8 (2017).
Google Scholar
Jiménez-Carmona, F., Carpintero, S. & Reyes-López, J. L. The digging-in effect on ant studies with pitfall traps: Influence of type of habitat and sampling time. Entomol. Exp. Appl. 167, 906–914 (2019).
Google Scholar
Paknia, O., Bergmann, T. & Hadrys, H. Some ‘ant’swers: Application of a layered barcode approach to problems in ant taxonomy. Mol. Ecol. Resour. 15, 1262–1274 (2015).
Google Scholar
Chen, Y. & Zhou, S. Phylogenetic relationships based on DNA barcoding among 16 species of the Ant Genus Formica (Hymenoptera: Formicidae) from China. J. Insect Sci. 17, 1–7 (2017).
Google Scholar
Giraud, T., Pedersen, J. S. & Keller, L. Evolution of supercolonies: Argentine ants of southern Europe. Proc. Natl. Acad. Sci. 99, 6075–6079 (2002).
Google Scholar
Touyama, Y., Ogata, K. & Sugiyama, T. The Argentine ant, Linepithema humile, in Japan: Assessment of impact on species diversity of ant communities in urban environments. Entomol. Sci. 6, 57–62 (2003).
Google Scholar
Okaue, M. et al. Distribution of the Argentine ant, Linepithema humile, along the Seto Inland Sea, western Japan: Result of surveys in 2003–2005. Entomol. Sci. 10, 337–342 (2007).
Google Scholar
Sunamura, E., Nishisue, K., Terayama, M. & Tatsuki, S. Invasion of four Argentine ant supercolonies into Kobe Port, Japan: Their distributions and effects on indigenous ants (Hymenoptera: Formicidae). Sociobiol. 50, 659–674 (2007).
Inoue, M. N. et al. Recent range expansion of Argentine ant in Japan. Divers. Distrib. 19, 2937 (2013).
Google Scholar
Park, S. H., Hosoishi, S. & Ogata, K. Long-term impacts of Argentine ant invasion of urban parks in Hiroshima, Japan. J. Ecol. Environ. 37, 123–129 (2014).
Google Scholar
Sugiyama, T. & Onishi, O. Invasion of Argentinean ants in Kyoto City Ari. J. Myrmecol. Soci. Jpn. 32, 127–129 (2009).
Murakami, K. Exotic ants in PortIsland, Kobe City Ari. J. Myrmecol. Soci. Jpn. 26, 45–46 (2002).
Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425 (2008).
Google Scholar
Jerde, C. L., Mahon, A. R., Chadderton, W. L. & Lodge, D. M. “Sight-unseen” detection of rare aquatic species using environmental DNA. Conserv. Lett. 4, 150–157 (2011).
Google Scholar
Minamoto, T., Yamanaka, H., Takahara, T., Honjo, M. N. & Kawabata, Z. Surveillance of fish species composition using environmental DNA. Limnology 13, 193–197 (2012).
Google Scholar
Bienert, F. et al. Tracking earthworm communities from soil DNA. Mol. Ecol. 21, 2017–2030 (2012).
Google Scholar
Turner, C. R., Uy, K. L. & Everhart, R. C. Fish environmental DNA is more concentrated in aquatic sediments than surface water. Biol. Conserv. 183, 93–102 (2015).
Google Scholar
Goldberg, C. S. et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 7, 1299–1307 (2016).
Google Scholar
Dejean, T. et al. Improved detection of an alien invasive species through environmental DNA barcoding: The example of the American bullfrog Lithobates catesbeianus. J. Appl. Ecol. 49, 953–959 (2012).
Google Scholar
Takahara, T., Minamoto, T. & Doi, H. Using environmental DNA to estimate the distribution of an invasive fish species in Ponds. PLoS One 8, e56584 (2013).
Google Scholar
Geerts, A. N., Boets, P., Van den Heede, S., Goethals, P. & Van der Heyden, C. A search for standardized protocols to detect alien invasive crayfish based on environmental DNA (eDNA): A lab and field evaluation. Ecol. Indic. 84, 564–572 (2018).
Google Scholar
Valentin, R. E., Fonseca, D. M., Nielsen, A. L., Leskey, T. C. & Lockwood, J. L. Early detection of invasive exotic insect infestations using eDNA from crop surfaces. Front. Ecol. Environ. 16, 265–270 (2018).
Google Scholar
Shogren, A. J. et al. Controls on eDNA movement in streams: Transport, retention, and resuspension. Sci. Rep. 7, 1–11 (2017).
Google Scholar
Jo, T., Murakami, H., Yamamoto, S., Masuda, R. & Minamoto, T. Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution. Ecol. Evol. 9, 1135–1146 (2019).
Google Scholar
Takahara, T., Minamoto, T., Yamanaka, H., Doi, H. & Kawabata, Z. Estimation of fish biomass using environmental DNA. PLoS One 7, e35868 (2012).
Google Scholar
Tillotson, M. D. et al. Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales. Biol. Conserv. 220, 1–11 (2018).
Google Scholar
Sakata, M. K. et al. Sedimentary eDNA provides different information on timescale and fish species composition compared with aqueous eDNA. Environ. DNA 2, 505–518 (2020).
Google Scholar
Pietramellara, G. et al. Extracellular DNA in soil and sediment: Fate and ecological relevance. Biol. Fert. Soils 45, 219–235 (2009).
Google Scholar
Matisoo-Smith, E. et al. Recovery of DNA and pollen from New Zealand lake sediments. Quat. Int. 184, 139–149 (2008).
Google Scholar
Foucher, A. et al. Persistence of environmental DNA in cultivated soils: Implication of this memory effect for reconstructing the dynamics of land use and cover changes. Sci. Rep. 10, 10502 (2020).
Google Scholar
Sirois, S. H. & Buckley, D. H. Factors governing extracellular DNA degradation dynamics in soil. Environ. Microbiol. Rep. 11, 173–184 (2019).
Google Scholar
Ogram, A. V., Mathot, M. L., Harsh, J. B., Boyle, J. & Pettigrew, C. A. Effects of DNA polymer length on its adsorption to soils. Appl. Environ. Microbiol. 60, 393–396 (1994).
Google Scholar
Braid, M. D., Daniels, L. M. & Kitts, C. L. Removal of PCR inhibitors from soil DNA by chemical flocculation. J. Microbiol. Methods 52, 389–393 (2003).
Google Scholar
Shogren, A. J. et al. Modelling the transport of environmental DNA through a porous substrate using continuous flow-through column experiments. J. R. Soc. Interface 13, 20160290 (2016).
Google Scholar
Oliverio, A. M., Gan, H., Wickings, K. & Fierer, N. A DNA metabarcoding approach to characterize soil arthropod communities. Soil Biol. Biochem. 125, 37–43 (2018).
Google Scholar
Hayami, K. et al. Effects of sampling seasons and locations on fish environmental DNA metabarcoding in dam reservoirs. Ecol. Evol. 10, 5354–5367 (2020).
Google Scholar
Sato, K. et al. Relationship among establishment durations, kin relatedness, aggressiveness, and distance between populations of eight invasive Argentine Ant (Hymenoptera: Formicidae) supercolonies in Japan. J. Econ. Entomol. 110, 1676–1684 (2017).
Google Scholar
Nakajima, S. et al. A list of ant species on the Yard of Kyoto Prefectural Institute of Public Health and Environment, Fushimi, Kyoto Annual report of Kyoto Pref. Inst. Hyg. Environ. Sci. 58, 47–50 (2013).
Nakajima, S. et al. Time saving improvement to the time-unit sampling method for quantitative surveys of ant faunas. Jpn. J. Environ. Entomol. Zool. 24, 39–50 (2013).
Kouduka, M. et al. A new DNA extraction method by controlled alkaline treatments from consolidated subsurface sediments. FEMS Microbiol. Lett. 326, 47–54 (2012).
Google Scholar
The eDNA Society. Environmental DNA Sampling and Experiment Manual (ver. 2.1). https://ednasociety.org/eDNA_manual_Eng_v2_1_3b.pdf (2019).
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/ (2018).
Source: Ecology - nature.com