in

Environmental DNA detection of an invasive ant species (Linepithema humile) from soil samples

  • 1.

    Moller, H. Lessons for invasion theory from social insects. Biol. Conserv. 78, 125–142 (1996).

    Article 

    Google Scholar 

  • 2.

    Pimentel, D. et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 84, 1–20 (2001).

    Article 

    Google Scholar 

  • 3.

    Kenis, M. et al. Ecological effects of invasive alien insects. Biol. Invasion 11, 21–45 (2009).

    Article 

    Google Scholar 

  • 4.

    McGlynn, T. P. The worldwide transfer of ants: Geographical distribution and ecological invasions. J. Biogeog. 26, 535–548 (1999).

    Article 

    Google Scholar 

  • 5.

    Morrison, L. W., Porter, S. D., Daniels, E. & Korzukhin, M. D. Potential global range expansion of the invasive fire ant, Solenopsis invicta. Biol. Invasions 6, 183–191 (2004).

    Article 

    Google Scholar 

  • 6.

    Fitzpatrick, M. C., Weltzin, J. F., Sanders, N. J. & Dunn, R. R. The biogeography of prediction error: Why does the introduced range of the fire ant over-predict its native range?. Global Ecol. Biogeog. 16, 24–33 (2007).

    Article 

    Google Scholar 

  • 7.

    Bertelsmeier, C., Luque, G. M., Hoffmann, B. D. & Courchamp, F. Worldwide ant invasions under climate change. Biodivers. Conserv. 24, 117–128 (2015).

    Article 

    Google Scholar 

  • 8.

    Rowles, A. D. & O’Dowd, D. J. Impacts of the invasive Argentine ant on native ants and other invertebrates in coastal scrub in south-eastern Australia. Austral. Ecol. 34, 239–248 (2009).

    Article 

    Google Scholar 

  • 9.

    Naumann, K. & Higgins, R. J. The European fire ant (Hymenoptera: Formicidae) as an invasive species: Impact on local ant species and other epigaeic arthropods. Can. Entomol. 147, 592–601 (2015).

    Article 

    Google Scholar 

  • 10.

    Uchida, S. et al. Effects of an invasive ant on land snails in the Ogasawara Islands. Conserv. Biol. 30, 1330–1337 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 11.

    Helanterä, H., Strassmann, J. E., Carrillo, J. & Queller, D. C. Unicolonial ants: Where do they come from, what are they and where are they going?. Trends Ecol. Evol. 24, 341–349 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 12.

    Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D. & Case, T. J. The causes and consequences of ant invasions. Ann. Rev. Ecol. Syst. 33, 181–233 (2002).

    Article 

    Google Scholar 

  • 13.

    Stafford, C. T. Hypersensitivity to fire ant venom. Ann. Allerg. Asthma Im. 77, 87–99 (1996).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Kemp, S. F., deShazo, R. D., Moffitt, J. E., Williams, D. F. & Buhner, W. A. II. Expanding habitat of the imported fire ant (Solenopsis invicta): A public health concern. J. Allergy Clin. Immun. 105, 683–691 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Morrison, J. E. Jr., Williams, D. F., Oi, D. H. & Potter, K. N. Damage to dry crop seed by red imported fire ant (Hymenoptera: Formicidae). J. Econ. Entomol. 90, 218–222 (1997).

    Article 

    Google Scholar 

  • 16.

    Mikissa, J. B., Jeffery, K., Fresneau, D. & Mercier, J. L. Impact of an invasive alien ant, Wasmannia auropunctata Roger., on a specialised plant-ant mutualism, Barteria fistulosa Mast. and Tetraponera aethiops F. Smith., in a Gabon forest. Ecol. Entomol. 38, 580–584 (2013).

    Article 

    Google Scholar 

  • 17.

    Keller, R. P., Lodge, D. M. & Finnoff, D. C. Risk assessment for invasive species produces net bioeconomic benefits. Proc. Natl. Acad. Sci. 104, 203–207 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Hulme, P. E., Nentwig, W., Pyšek, P. & Vilà, M. Common market, shared problems: Time for a coordinated response to biological invasions in Europe. Neobiota 8, 3–19 (2009).

    Google Scholar 

  • 19.

    Pluess, T. et al. Which factors affect the success or failure of eradication campaigns against Alien species?. PLoS One 7, 48157 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 20.

    Sakamoto, Y., Kumagai, N. H. & Goka, K. Declaration of local chemical eradication of the Argentine ant: Bayesian estimation with a multinomial-mixture model. Sci. Rep. 7, 1–8 (2017).

    Article 
    CAS 

    Google Scholar 

  • 21.

    Jiménez-Carmona, F., Carpintero, S. & Reyes-López, J. L. The digging-in effect on ant studies with pitfall traps: Influence of type of habitat and sampling time. Entomol. Exp. Appl. 167, 906–914 (2019).

    Article 

    Google Scholar 

  • 22.

    Paknia, O., Bergmann, T. & Hadrys, H. Some ‘ant’swers: Application of a layered barcode approach to problems in ant taxonomy. Mol. Ecol. Resour. 15, 1262–1274 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Chen, Y. & Zhou, S. Phylogenetic relationships based on DNA barcoding among 16 species of the Ant Genus Formica (Hymenoptera: Formicidae) from China. J. Insect Sci. 17, 1–7 (2017).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Giraud, T., Pedersen, J. S. & Keller, L. Evolution of supercolonies: Argentine ants of southern Europe. Proc. Natl. Acad. Sci. 99, 6075–6079 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Touyama, Y., Ogata, K. & Sugiyama, T. The Argentine ant, Linepithema humile, in Japan: Assessment of impact on species diversity of ant communities in urban environments. Entomol. Sci. 6, 57–62 (2003).

    Article 

    Google Scholar 

  • 26.

    Okaue, M. et al. Distribution of the Argentine ant, Linepithema humile, along the Seto Inland Sea, western Japan: Result of surveys in 2003–2005. Entomol. Sci. 10, 337–342 (2007).

    Article 

    Google Scholar 

  • 27.

    Sunamura, E., Nishisue, K., Terayama, M. & Tatsuki, S. Invasion of four Argentine ant supercolonies into Kobe Port, Japan: Their distributions and effects on indigenous ants (Hymenoptera: Formicidae). Sociobiol. 50, 659–674 (2007).

    Google Scholar 

  • 28.

    Inoue, M. N. et al. Recent range expansion of Argentine ant in Japan. Divers. Distrib. 19, 2937 (2013).

    Article 

    Google Scholar 

  • 29.

    Park, S. H., Hosoishi, S. & Ogata, K. Long-term impacts of Argentine ant invasion of urban parks in Hiroshima, Japan. J. Ecol. Environ. 37, 123–129 (2014).

    Article 

    Google Scholar 

  • 30.

    Sugiyama, T. & Onishi, O. Invasion of Argentinean ants in Kyoto City Ari. J. Myrmecol. Soci. Jpn. 32, 127–129 (2009).

    Google Scholar 

  • 31.

    Murakami, K. Exotic ants in PortIsland, Kobe City Ari. J. Myrmecol. Soci. Jpn. 26, 45–46 (2002).

    Google Scholar 

  • 32.

    Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Jerde, C. L., Mahon, A. R., Chadderton, W. L. & Lodge, D. M. “Sight-unseen” detection of rare aquatic species using environmental DNA. Conserv. Lett. 4, 150–157 (2011).

    Article 

    Google Scholar 

  • 34.

    Minamoto, T., Yamanaka, H., Takahara, T., Honjo, M. N. & Kawabata, Z. Surveillance of fish species composition using environmental DNA. Limnology 13, 193–197 (2012).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Bienert, F. et al. Tracking earthworm communities from soil DNA. Mol. Ecol. 21, 2017–2030 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Turner, C. R., Uy, K. L. & Everhart, R. C. Fish environmental DNA is more concentrated in aquatic sediments than surface water. Biol. Conserv. 183, 93–102 (2015).

    Article 

    Google Scholar 

  • 37.

    Goldberg, C. S. et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 7, 1299–1307 (2016).

    Article 

    Google Scholar 

  • 38.

    Dejean, T. et al. Improved detection of an alien invasive species through environmental DNA barcoding: The example of the American bullfrog Lithobates catesbeianus. J. Appl. Ecol. 49, 953–959 (2012).

    Article 

    Google Scholar 

  • 39.

    Takahara, T., Minamoto, T. & Doi, H. Using environmental DNA to estimate the distribution of an invasive fish species in Ponds. PLoS One 8, e56584 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Geerts, A. N., Boets, P., Van den Heede, S., Goethals, P. & Van der Heyden, C. A search for standardized protocols to detect alien invasive crayfish based on environmental DNA (eDNA): A lab and field evaluation. Ecol. Indic. 84, 564–572 (2018).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Valentin, R. E., Fonseca, D. M., Nielsen, A. L., Leskey, T. C. & Lockwood, J. L. Early detection of invasive exotic insect infestations using eDNA from crop surfaces. Front. Ecol. Environ. 16, 265–270 (2018).

    Article 

    Google Scholar 

  • 42.

    Shogren, A. J. et al. Controls on eDNA movement in streams: Transport, retention, and resuspension. Sci. Rep. 7, 1–11 (2017).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Jo, T., Murakami, H., Yamamoto, S., Masuda, R. & Minamoto, T. Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution. Ecol. Evol. 9, 1135–1146 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Takahara, T., Minamoto, T., Yamanaka, H., Doi, H. & Kawabata, Z. Estimation of fish biomass using environmental DNA. PLoS One 7, e35868 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Tillotson, M. D. et al. Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales. Biol. Conserv. 220, 1–11 (2018).

    Article 

    Google Scholar 

  • 46.

    Sakata, M. K. et al. Sedimentary eDNA provides different information on timescale and fish species composition compared with aqueous eDNA. Environ. DNA 2, 505–518 (2020).

    Article 

    Google Scholar 

  • 47.

    Pietramellara, G. et al. Extracellular DNA in soil and sediment: Fate and ecological relevance. Biol. Fert. Soils 45, 219–235 (2009).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Matisoo-Smith, E. et al. Recovery of DNA and pollen from New Zealand lake sediments. Quat. Int. 184, 139–149 (2008).

    Article 

    Google Scholar 

  • 49.

    Foucher, A. et al. Persistence of environmental DNA in cultivated soils: Implication of this memory effect for reconstructing the dynamics of land use and cover changes. Sci. Rep. 10, 10502 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Sirois, S. H. & Buckley, D. H. Factors governing extracellular DNA degradation dynamics in soil. Environ. Microbiol. Rep. 11, 173–184 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 51.

    Ogram, A. V., Mathot, M. L., Harsh, J. B., Boyle, J. & Pettigrew, C. A. Effects of DNA polymer length on its adsorption to soils. Appl. Environ. Microbiol. 60, 393–396 (1994).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Braid, M. D., Daniels, L. M. & Kitts, C. L. Removal of PCR inhibitors from soil DNA by chemical flocculation. J. Microbiol. Methods 52, 389–393 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Shogren, A. J. et al. Modelling the transport of environmental DNA through a porous substrate using continuous flow-through column experiments. J. R. Soc. Interface 13, 20160290 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Oliverio, A. M., Gan, H., Wickings, K. & Fierer, N. A DNA metabarcoding approach to characterize soil arthropod communities. Soil Biol. Biochem. 125, 37–43 (2018).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Hayami, K. et al. Effects of sampling seasons and locations on fish environmental DNA metabarcoding in dam reservoirs. Ecol. Evol. 10, 5354–5367 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Sato, K. et al. Relationship among establishment durations, kin relatedness, aggressiveness, and distance between populations of eight invasive Argentine Ant (Hymenoptera: Formicidae) supercolonies in Japan. J. Econ. Entomol. 110, 1676–1684 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    Nakajima, S. et al. A list of ant species on the Yard of Kyoto Prefectural Institute of Public Health and Environment, Fushimi, Kyoto Annual report of Kyoto Pref. Inst. Hyg. Environ. Sci. 58, 47–50 (2013).

    Google Scholar 

  • 58.

    Nakajima, S. et al. Time saving improvement to the time-unit sampling method for quantitative surveys of ant faunas. Jpn. J. Environ. Entomol. Zool. 24, 39–50 (2013).

    Google Scholar 

  • 59.

    Kouduka, M. et al. A new DNA extraction method by controlled alkaline treatments from consolidated subsurface sediments. FEMS Microbiol. Lett. 326, 47–54 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 60.

    The eDNA Society. Environmental DNA Sampling and Experiment Manual (ver. 2.1). https://ednasociety.org/eDNA_manual_Eng_v2_1_3b.pdf (2019).

  • 61.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/ (2018).


  • Source: Ecology - nature.com

    MIT students and alumni “hack” Hong Kong Kowloon East

    Coexistence holes fill a gap in community assembly theory