IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science—Policy Platform on Biodiversity and Ecosystem Services (eds Brondizio, E. S. et al.) (IPBES Secretariat, 2019).
Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Biodiversity Synthesis ed Ma (World Resources Institute, 2005). http://www.loc.gov/catdir/toc/ecip0512/2005013229.html. Accessed June 2019.
Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486(7401), 105 (2012).
Google Scholar
Vellend, M. et al. Homogenization of forest plant communities and weakening of species–environment relationships via agricultural land use. J. Ecol. 95(3), 565–573. https://doi.org/10.1111/j.1365-2745.2007.01233.x (2007).
Google Scholar
Karp, D. S. et al. Intensive agriculture erodes β-diversity at large scales. Ecol. Lett. 15(9), 963–970. https://doi.org/10.1111/j.1461-0248.2012.01815.x (2012).
Google Scholar
Anderson, M. J. et al. Navigating the multiple meanings of β diversity: A roadmap for the practicing ecologist. Ecol. Lett. 14(1), 19–28. https://doi.org/10.1111/j.1461-0248.2010.01552.x (2011).
Google Scholar
Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31(1), 67–80. https://doi.org/10.1016/j.tree.2015.11.005 (2016).
Google Scholar
Mori, A. S., Isbell, F. & Seidl, R. β-Diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol. 33(7), 549–564 (2018).
Google Scholar
Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85(2), 183–206 (2010).
Google Scholar
Wang, S., Lamy, T., Hallett, L. M. & Loreau, M. Stability and synchrony across ecological hierarchies in heterogeneous metacommunities: Linking theory to data. Ecography (Cop) 42(6), 1200–1211. https://doi.org/10.1111/ecog.04290 (2019).
Google Scholar
Olden, J. D. Biotic homogenization: A new research agenda for conservation biogeography. J. Biogeogr. 33(12), 2027–2039. https://doi.org/10.1111/j.1365-2699.2006.01572.x (2006).
Google Scholar
Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl. Acad. Sci. 100(22), 12765–12770 (2003).
Google Scholar
Harrison, S. Species Diversity, Spatial Scale, and Global Change (Sinauer Sunderland, 1993).
Sax, D. F. & Gaines, S. D. Species diversity: From global decreases to local increases. Trends Ecol. Evol. 18(11), 561–566 (2003).
Google Scholar
Hillebrand, H. & Matthiessen, B. Biodiversity in a complex world: Consolidation and progress in functional biodiversity research. Ecol. Lett. 12(12), 1405–1419 (2009).
Google Scholar
Magurran, A. E. & McGill, B. J. Biological Diversity: Frontiers in Measurement and Assessment (Oxford University Press, 2010).
Usseglio, P. Quantifying reef fishes: Bias in observational approaches. In Ecology of Fishes on Coral Reefs (ed Mora, C.) 270–273 (Cambridge University Press, 2015). https://www.cambridge.org/core/books/ecology-of-fishes-on-coral-reefs/quantifying-reef-fishes-bias-in-observational-approaches/660760F9E62CC61DEB48C8124AD44CDC. Accessed June 2019.
Caldwell, Z. R., Zgliczynski, B. J., Williams, G. J. & Sandin, S. A. Reef Fish survey techniques: Assessing the potential for standardizing methodologies. PLoS One 11(4), e0153066. https://doi.org/10.1371/journal.pone.0153066 (2016).
Google Scholar
Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314(5800), 787–790 (2006).
Google Scholar
Barbier, E. B. Marine ecosystem services. Curr. Biol. 27(11), R507–R510 (2017).
Google Scholar
Goodwin, K. D. et al. DNA sequencing as a tool to monitor marine ecological status. Front. Mar. Sci. 4, 107. https://doi.org/10.3389/fmars.2017.00107 (2017).
Google Scholar
Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26(21), 5872–5895. https://doi.org/10.1111/mec.14350 (2017).
Google Scholar
Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21(8), 2045–2050. https://doi.org/10.1111/j.1365-294X.2012.05470.x (2012).
Google Scholar
Creer, S. et al. The ecologist’s field guide to sequence-based identification of biodiversity. Methods Ecol. Evol. 7(9), 1008–1018. https://doi.org/10.1111/2041-210X.12574 (2016).
Google Scholar
Stat, M. et al. Ecosystem biomonitoring with eDNA: Metabarcoding across the tree of life in a tropical marine environment. Sci. Rep. 7(1), 12240. https://doi.org/10.1038/s41598-017-12501-5 (2017).
Google Scholar
Bakker, J. et al. Environmental DNA reveals tropical shark diversity in contrasting levels of anthropogenic impact. Sci. Rep. 7(1), 16886. https://doi.org/10.1038/s41598-017-17150-2 (2017).
Google Scholar
Port, J. A. et al. Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA. Mol. Ecol. 25(2), 527–541. https://doi.org/10.1111/mec.13481 (2016).
Google Scholar
Andruszkiewicz, E. A. et al. Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLoS One 12(4), e0176343. https://doi.org/10.1371/journal.pone.0176343 (2017).
Google Scholar
Yamamoto, S. et al. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Sci. Rep. 7, 40368. https://doi.org/10.1038/srep40368 (2017).
Google Scholar
O’Donnell, J. L. et al. Spatial distribution of environmental DNA in a nearshore marine habitat. PeerJ 5, e3044. https://doi.org/10.7717/peerj.3044 (2017).
Google Scholar
Jeunen, G.-J. et al. Environmental DNA (eDNA) metabarcoding reveals strong discrimination among diverse marine habitats connected by water movement. Mol. Ecol. Resour. 19(2), 426–438. https://doi.org/10.1111/1755-0998.12982 (2019).
Google Scholar
Stat, M. et al. Combined use of eDNA metabarcoding and video surveillance for the assessment of fish biodiversity. Conserv. Biol. 33(1), 196–205 (2019).
Google Scholar
West, K. M. et al. eDNA metabarcoding survey reveals fine-scale coral reef community variation across a remote, tropical island ecosystem. Mol. Ecol. 29(6), 1069–1086. https://doi.org/10.1111/mec.15382 (2020).
Google Scholar
Graham, H. M. Effects of local deforestation on the diversity and structure of Southern California giant kelp forest food webs. Ecosystems 7(4), 341–357. https://doi.org/10.1007/s10021-003-0245-6 (2004).
Google Scholar
Miller, R. J. et al. Giant kelp, Macrocystis pyrifera, increases faunal diversity through physical engineering. Proc R Soc B Biol Sci 285(1874), 20172571 (2018).
Google Scholar
Lamy, T. et al. Scale-specific drivers of kelp forest communities. Oecologia 186(1), 217–233 (2018).
Google Scholar
Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl. Acad. Sci. 113(48), 13791–13796 (2016).
Google Scholar
Steneck, R. S. et al. Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environ. Conserv. 29(04), 436–459 (2003).
Google Scholar
Nekola, J. C. & White, P. S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26(4), 867–878. https://doi.org/10.1046/j.1365-2699.1999.00305.x (1999).
Google Scholar
Claisse, J. T. et al. Biogeographic patterns of communities across diverse marine ecosystems in southern California. Mar. Ecol. 39(S1), e12453. https://doi.org/10.1111/maec.12453 (2018).
Google Scholar
Jerde, C. L., Wilson, E. A. & Dressler, T. L. Measuring global fish species richness with eDNA metabarcoding. Mol. Ecol. Resour. 19(1), 19–22. https://doi.org/10.1111/1755-0998.12929 (2019).
Google Scholar
Sigsgaard, E. E. et al. Seawater environmental DNA reflects seasonality of a coastal fish community. Mar. Biol. 164(6), 128. https://doi.org/10.1007/s00227-017-3147-4 (2017).
Google Scholar
Nickols, K. J., Wilson White, J., Largier, J. L. & Gaylord, B. Marine population connectivity: Reconciling large-scale dispersal and high self-retention. Am. Nat. 185(2), 196–211. https://doi.org/10.1086/679503 (2015).
Google Scholar
Nickols, K. J., Gaylord, B. & Largier, J. L. The coastal boundary layer: Predictable current structure decreases alongshore transport and alters scales of dispersal. Mar. Ecol. Prog. Ser. 464, 17–35 (2012).
Google Scholar
Sassoubre, L. M., Yamahara, K. M., Gardner, L. D., Block, B. A. & Boehm, A. B. Quantification of environmental DNA (eDNA) shedding and decay rates for three marine fish. Environ. Sci. Technol. 50(19), 10456–10464. https://doi.org/10.1021/acs.est.6b03114 (2016).
Google Scholar
Collins, R. A. et al. Persistence of environmental DNA in marine systems. Commun. Biol. 1(1), 185. https://doi.org/10.1038/s42003-018-0192-6 (2018).
Google Scholar
Andruszkiewicz Allan, E., Zhang, W. G., Lavery, C. A. & Govindarajan, F. A. Environmental DNA shedding and decay rates from diverse animal forms and thermal regimes. Environ. DNA 3(2), 492–514. https://doi.org/10.1002/edn3.141 (2021).
Google Scholar
Hansen, B. K., Bekkevold, D., Clausen, L. W. & Nielsen, E. E. The sceptical optimist: Challenges and perspectives for the application of environmental DNA in marine fisheries. Fish Fish. 19(5), 751–768. https://doi.org/10.1111/faf.12286 (2018).
Google Scholar
Weltz, K. et al. Application of environmental DNA to detect an endangered marine skate species in the wild. PLoS One 12(6), e0178124. https://doi.org/10.1371/journal.pone.0178124 (2017).
Google Scholar
Fram, J. P. et al. Physical pathways and utilization of nitrate supply to the giant kelp, Macrocystis pyrifera. Limnol. Oceanogr. 53(4), 1589–1603. https://doi.org/10.4319/lo.2008.53.4.1589 (2008).
Google Scholar
Jackson, G. A. & Winant, C. D. Effect of a kelp forest on coastal currents. Cont. Shelf. Res. 2(1), 75–80 (1983).
Google Scholar
Grant, W. D. & Madsen, O. S. The continental-shelf bottom boundary layer. Annu. Rev. Fluid Mech. 18(1), 265–305. https://doi.org/10.1146/annurev.fl.18.010186.001405 (1986).
Google Scholar
Leary, P. R. et al. “Internal tide pools” prolong kelp forest hypoxic events. Limnol. Oceanogr. 62(6), 2864–2878. https://doi.org/10.1002/lno.10716 (2017).
Google Scholar
Gaylord, B. et al. Spatial patterns of flow and their modification within and around a giant kelp forest. Limnol. Oceanogr. 52(5), 1838–1852 (2007).
Google Scholar
Lafferty, K. D., Benesh, K. C., Mahon, A. R., Jerde, C. L. & Lowe, C. G. Detecting Southern California’s white sharks with environmental DNA. Front. Mar. Sci. 5, 355. https://doi.org/10.3389/fmars.2018.00355 (2018).
Google Scholar
Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2(7), 150088 (2015).
Google Scholar
Hyde, J. R. & Vetter, R. D. The origin, evolution, and diversification of rockfishes of the genus Sebastes (Cuvier). Mol. Phylogenet. Evol. 44(2), 790–811 (2007).
Google Scholar
Min, M. A., Barber, P. H. & Gold, Z. MiSebastes: An eDNA metabarcoding primer set for rockfishes (genus Sebastes). bioRxiv. (2020). http://biorxiv.org/content/early/2020/10/30/2020.10.29.360859.abstract. Accessed January 2021.
Gold, Z., Sprague, J., Kushner, D. J., Zerecero Marin, E. & Barber, P. H. eDNA metabarcoding as a biomonitoring tool for marine protected areas. PLoS One 16(2), e0238557. https://doi.org/10.1371/journal.pone.0238557 (2021).
Google Scholar
Civade, R. et al. Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system. PLoS One 11(6), e0157366 (2016).
Google Scholar
Berry, T. E. et al. Marine environmental DNA biomonitoring reveals seasonal patterns in biodiversity and identifies ecosystem responses to anomalous climatic events. PLoS Genet. 15(2), e1007943. https://doi.org/10.1371/journal.pgen.1007943 (2019).
Google Scholar
Ausubel, J. H., Stoeckle, M. Y. & Gaffney, P. Final Report of the 1st US National Conference on Marine Environmental DNA (eDNA). (2019).
Reed, D. C. SBC LTER: Reef: Annual time series of biomass for kelp forest species, ongoing since 2000. Environ. Data Initiat. https://doi.org/10.6073/pasta/23965abf42954f345cfd6642fe3c4810 (2018).
O’Donnell, J. L., Kelly, R. P., Lowell, N. C. & Port, J. A. Indexed PCR primers induce template-specific bias in large-scale DNA sequencing studies. PLoS One 11(3), e0148698 (2016).
Google Scholar
Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30(5), 614–620 (2014).
Google Scholar
Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
Google Scholar
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17(1), 10–12 (2011).
Google Scholar
Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm: Robust and fast clustering method for amplicon-based studies. PeerJ 2, e593 (2014).
Google Scholar
Huson, D. H. et al. MEGAN community edition—interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12(6), 1–12 (2016).
Google Scholar
McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).
Google Scholar
Crist, T. O., Veech, J. A., Gering, J. C. & Summerville, K. S. Partitioning species diversity across landscapes and regions: A hierarchical analysis of alpha, beta, and gamma diversity. Am. Nat. 162(6), 734–743 (2003).
Google Scholar
Muggeo, V. M. R. Estimating regression models with unknown break-points. Stat. Med. 22(19), 3055–3071 (2003).
Google Scholar
Legendre, P., Borcard, D. & Roberts, D. W. Variation partitioning involving orthogonal spatial eigenfunction submodels. Ecology 93(5), 1234–1240. https://doi.org/10.1890/11-2028.1 (2012).
Google Scholar
Silva, A. R., Dias, C. T. S., Cecon, P. R. & Rêgo, E. R. An alternative procedure for performing a power analysis of Mantel’s test. J. Appl. Stat. 42(9), 1984–1992. https://doi.org/10.1080/02664763.2015.1014894 (2015).
Google Scholar
Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymetrical approach. Ecol. Monogr. 67(3), 345–366 (1997).
Team, R. C. R: A language and environment for statistical computing. (2018). https://www.r-project.org/. Accessed June 2018.
Oksanen, J. et al. Package ‘vegan.’ Community Ecol Packag version:2. (2015).
Source: Ecology - nature.com