in

Environmental impact of the cultivation of energy willow in Poland

  • 1.

    Roy, P., Tokuyasu, K., Orikasa, T., Nakamura, N. & Shiixa, T. A Review of life cycle assessment (LCA) of bioethanol from lignocellulosic biomass. JARQ 46, 41–57 (2012).

    CAS  Article  Google Scholar 

  • 2.

    Palmer, M. M., Forrester, J. A., Rothstein, D. E. & Mladenoff, D. J. Establishment phase greenhouse gas emissions in short rotation woody biomass plantations in the Northern Lake States, USA. Biomass Bioenergy 62, 26–36 (2014).

    CAS  Article  Google Scholar 

  • 3.

    González-García, S., Iribarren, D., Susmozas, A., Dufour, J. & Murphy, R. J. Life cycle assessment of two alternative bioenergy systems involving Salix spp. biomass: bioethanol production and power generation. Appl. Energy 95, 111–122 (2012).

    Article  CAS  Google Scholar 

  • 4.

    Mizsey, P. & Racz, P. Cleaner production alternatives: biomass utilisation options. J. Clean. Prod. 18, 767–770 (2010).

    CAS  Article  Google Scholar 

  • 5.

    Igliński, B., Cichosz, M., Skrzatek, M. & Buczkowski, R. Potencjał energetyczny biomasy na gruntach ugorowanych i nieużytkach w Polsce. Inżynieria i Ochrona Środowiska 21, 79–87 (2018).

    Google Scholar 

  • 6.

    Stolarski, M., Szczukowski, S. & Tworkowski, J. Biopaliwa z biomasy wieloletnich roślin energetycznych. Energetyka 1, 77–80 (2008).

    Google Scholar 

  • 7.

    Murphy, F., Devlin, G. & McDonnell, K. Energy requirements and environmental impacts associated with the production of short rotation willow (Salix sp.) chip in Ireland. GCB Bioenergy 6, 727–739 (2014).

    Article  Google Scholar 

  • 8.

    El Bassam, N. Handboook for Bioenergy Crops. Earthscan, London, 544 (2010).

  • 9.

    Eisenbies, M. H., Volk, T. A., Posselius, J., Foster, Ch. & Shi, S. Evaluation of a single-pass, cut and chip harvest system on commercial-scale, short-rotation shrub willow biomass crops. BioEnergy Res. 7(4), 1506–1518 (2014).

    Article  Google Scholar 

  • 10.

    Nathan, J., Sleight, N. & Volk, T. A. Recently Bred Willow (Salix spp.) Biomass crops show stable yield trends over three rotations at two sites. BioEnergy Res. 9, 782–797 (2016).

    Article  Google Scholar 

  • 11.

    Djomo, S. N., Kasmioui, O. E. & Ceulemans, R. Energy and greenhouse gas balance of bioenergy production from poplar and willow: a review. GCB Bioenergy 3(3), 181–197 (2011).

    CAS  Article  Google Scholar 

  • 12.

    Hammar, T., Ericsson, N., Sundberg, C. & Hansson, P. A. Climate impact of willow grown for bioenergy in Sweden. BioEnergy Res. 7, 1529–1540 (2014).

    Article  Google Scholar 

  • 13.

    Argus, G. W. Infrageneric classification of Salix (Salicaceae) in the new world. Syst. Bot. Monogr. 52, 101–121 (1997).

    Article  Google Scholar 

  • 14.

    Keoleian, G. A. & Volk, T. A. Renewable energy from willow biomass crops: life cycle energy, environmental, and economic performance. Crit. Rev. Plant Sci. 24, 385–406 (2005).

    Article  Google Scholar 

  • 15.

    Christersson, L., Sennerby-Forsse, L. & Zsuffa, L. The role and significance of woody biomass plantations in Swedish agriculture. For. Chron. 69, 687–693 (1993).

    Article  Google Scholar 

  • 16.

    Schroeder, W., Kort, J., Savoie, P. & Preto, F. Biomass harvest from natural willow rings around prairie wetlands. BioEnergy Res. 2, 99–105 (2009).

    Article  Google Scholar 

  • 17.

    Abrahamson, L. P., Volk, T. A. & Smart, L. P. Shrub Willow Producers Handbook (SUNY-ESF, Syracuse, 2010).

    Google Scholar 

  • 18.

    Heller, M. C., Keoleian, G. A. & Volk, T. A. Life cycle assessment of a willow bioenergy cropping system. Biomass Bioenerg. 25, 147–165 (2003).

    CAS  Article  Google Scholar 

  • 19.

    Volk, T. A., Verwijst, T., Tharakan, P. J., Abrahamson, L. P. & White, E. H. Growing fuel: a sustainability assessment of willow biomass crops. Front. Ecol. Evol. 2(8), 411–418 (2004).

    Article  Google Scholar 

  • 20.

    Rowe, R. L., Street, N. R. & Taylor, G. Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK. Renew. Sustain. Energy Rev. 13, 271–290 (2009).

    Article  Google Scholar 

  • 21.

    Lippke, B. et al. Comparing life-cycle carbon and energy impacts for biofuel, wood product, and forest management alternatives. Forest Prod. J. 62, 247–257 (2012).

    CAS  Article  Google Scholar 

  • 22.

    Caputo, J. et al. Incorporating uncertainty into a life cycle assessment (LCA) model of short-rotation willow biomass (Salix spp) crops. BioEnergy Res. 7(1), 48–59 (2014).

    CAS  Article  Google Scholar 

  • 23.

    Davis, S. C. et al. Impact of second-generation biofuel agriculture on greenhouse-gas emissions in the corngrowing regions of the US. Front. Ecol. Environ. 10, 69–74 (2012).

    Article  Google Scholar 

  • 24.

    Arevalo, C. B. M., Bhatti, J. S., Chang, S. X. & Skidders, D. Land use change effects on ecosystem carbon balance: from agricultural to hybrid poplar plantation. Agric. Ecosyst. Environ. 141, 342–349 (2011).

    Article  Google Scholar 

  • 25.

    Pietrzykowski, M. et al. Carbon sink potential and allocation in above-and below-ground biomass in willow coppice. J. For. Res. https://doi.org/10.1007/s11676-019-01089-3 (2020).

    Article  Google Scholar 

  • 26.

    Langholtz, M. et al. Economic comparative advantage of willow biomass in the Northeast USA. Biofuels Bioprod. Biorefin. 13(1), 74–85 (2019).

    CAS  Article  Google Scholar 

  • 27.

    Kimming, M. et al. Biomass from agriculture in small-scale combined heat and power plants. Comp. Life Cycle Assess. Biomass Bioenergy 35, 1572–1581 (2011).

    CAS  Article  Google Scholar 

  • 28.

    Fargione, J. E., Plevin, R. J. & Hill, J. D. The ecological impact of biofuels. Annu. Rev. Ecol. Evol. 41, 351–377 (2010).

    Article  Google Scholar 

  • 29.

    Zhao, F., Wu, J., Wang, L., Liu, S., Wei, X., Xiao, J., Qiu, L., & Sun, P. Multi-environmental impacts of biofuel production in the US Corn Belt: a coupled hydro-biogeochemical modeling approach. J. Clea. Prod. 251, 119561, ISSN 0959-6526 (2020).

  • 30.

    Wu, Y., Liu, S. & Li, Z. Identifying potential areas for biofuel production and evaluating the environmental effects: a case study of the James River Basin in the Midwestern United States. Glob. Change Biol. Bioenergy 4, 875–888 (2012).

    Article  Google Scholar 

  • 31.

    Wu, Y. et al. Bioenergy production and environmental impacts. Geosci. Lett. 5, 14 (2018).

    ADS  Article  Google Scholar 

  • 32.

    Meehan, T. D., Hurlbert, A. H. & Gratton, C. Bird communities in future bioenergy landscapes of the Upper Midwest. Proc. Natl. Acad. Sci. 107, 18533–18538 (2010).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Murphy, R., Woods, J., Black, M. & McManus, M. Global developments in the competition for land from biofuels. Food Policy 36, 52–61 (2011).

    Article  Google Scholar 

  • 34.

    Styles, D., Borjesson, P., d’Hertefeldt, T., Birkhofer, K., Dauber, J., Adams, P., & Vaneeckhaute, C. Climate regulation, energy provisioning and water purification (2019).

  • 35.

    Zhang, Y. K. & Schilling, K. E. Increasing streamflow and baseflow in Mississippi River since the 1940s: effect of land use change. J. Hydrol. 324, 412–422 (2006).

    ADS  Article  Google Scholar 

  • 36.

    Pacaldo, R. S., Volk, T. A. & Briggs, R. D. No significant differences in soil organic carbon contents along a chronosequence of shrub willow biomass crop fields. Biomass Bioenerg. 58, 136–142 (2013).

    CAS  Article  Google Scholar 

  • 37.

    Guo, L. B. & Gifford, R. M. Soil carbon stocks and land use change: a meta-analysis. Glob. Change Biol. 8, 345–360 (2002).

    ADS  Article  Google Scholar 

  • 38.

    Gelfand, I., Snapp, S. S. & Robertson, G. P. Energy efficiency of conventional, organic, and alternative cropping systems for food and fuel at a site in the US Midwest. Environ. Sci. Technol. 44, 4006–4011 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 39.

    Zenone, T. et al. CO2 fluxes of transitional bioenergy crops: effect of land conversion during the first year of cultivation. Glob. Change Biol. Bioenergy 3, 401–412 (2011).

    Article  Google Scholar 

  • 40.

    Henner, D., Smith, P., Davies, C., McNamara, N., Balkovic, J. Sustainable whole system: Miscanthus, Willow and Poplar bioenergy crops for carbon stabilisation and erosion control in agricultural systems. In Geophysical Research Abstracts 21 (2019).

  • 41.

    Bouwman, A. F., van Grinsven, J. M. & Eickhout, B. Consequences of the cultivation of energy crops for the global nitrogen cycle. Ecol. Appl. 20, 101–109 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Fargione, J., Hill, J., Tilman, D., Polasky, S. & Hawthorne, P. Land clearing and the biofuel carbon debt. Science 319, 1235–1238 (2008).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Searchinger, T. et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land use change. Science 319, 1238–1240 (2008).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Sikora, J. et al. The impact of a controlled-release fertilizer on greenhouse gas emissions and the efficiency of the production of Chinese cabbage. Energies 8(13), 2063 (2020).

    Article  CAS  Google Scholar 

  • 46.

    Tonini, D. & Astrup, T. LCA of biomass-based energy systems: a case 2008 study for Denmark. Appl. Energy 99, 234–246 (2012).

    CAS  Article  Google Scholar 

  • 47.

    Caserini, S., Livio, S., Giugliano, M., Grosso, M. & Rigamonti, L. LCA of domestic and centralized biomass combustion: the case of Lombardy (Italy). Biomass Bioenerg. 34, 474–482 (2010).

    CAS  Article  Google Scholar 

  • 48.

    Kowalczyk, Z. Environmental impact of potato cultivation on plantations covering areas of various sizes. In Web of Conferences, E3S Web Conferences, 2019, XXII International Scientific Conference POLSITA, Progress of Mechanical Engineering Supported by Information Technology Vol. 132 (2019).

  • 49.

    Kowalczyk, Z. Life cycle assessment (LCA) of potato production. In Web of Conferences, E3S Web Conferences, 2019, XXII International Scientific Conference POLSITA Progress of Mechanical Engineering Supported by Information Technology Vol. 132 (2019).

  • 50.

    Roy, P. et al. A review of life cycle assessment (LCA) on some food products. J. Food Eng. 90, 1–10 (2009).

    Article  Google Scholar 

  • 51.

    Klein, D., Wolf, Ch., Schulz, Ch. & Weber-Blaschke, G. 20 years of life cycle assessment (LCA) in the forestry sector: state of the art and a methodical proposal for the LCA of forest production. Int. J. Life Cycle Assess. 20, 556–575 (2015).

    CAS  Article  Google Scholar 

  • 52.

    Cherubini, F. GHG balances of bioenergy systems—overview of key steps in the production chain and methodological concerns. Renew. Energy 35(7), 1565–1573 (2010).

    CAS  Article  Google Scholar 

  • 53.

    Supasri, T. et al. Life cycle assessment of maize cultivation and biomass utilization in northern Thailand. Sci. Rep. 10, 3516 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Turconi, R., Boldrin, A. & Astrup, T. Life cycle assessment (LCA) of electricity generation technologies: overview, comparability and limitations. Renew. Sustain. Energy Rev. 28, 555–565 (2013).

    CAS  Article  Google Scholar 

  • 55.

    Finnveden, G. et al. Recent developments in life cycle assessment. J. Environ. Manage. 91(1), 1–21 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Guidi Nissim, W., Pitre, F. E., Teodorescu, T. I. & Labrecque, M. Long-term biomass productivity of willow bioenergy plantations maintained in southern Quebec Canada. Biomass Bioenergy 56, 361–369 (2013).

    Article  Google Scholar 

  • 57.

    Kowalczyk, Z. & Kwaśniewski, D. Life cycle assessment (LCA) in energy willow cultivation on plantations with varied surface area. Agric. Eng. 23(4), 11–19 (2019).

    Google Scholar 

  • 58.

    Huijbregts, M. A. J. et al. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 22, 138–147 (2017).

    Article  Google Scholar 

  • 59.

    IPCC Climate change 2013: the physical science basis. In: Stocker TF, QinD, PlattnerGK, TignorM, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press, 1535 (2013).

  • 60.

    Joos, F. et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos. Chem. Phys. 13, 2793–2825 (2013).

    ADS  Article  CAS  Google Scholar 

  • 61.

    WMO Scientific assessment of ozone depletion. 2010, Global Ozone Research and Monitoring Project-Report 52 (World Meteorological Organization, Geneva, 2011).

    Google Scholar 

  • 62.

    Frischknecht, R., Braunschweig, A., Hofstetter, P. & Suter, P. Human health damages due to ionising radiation in life cycle impact assessment. Environ. Impact Asses Rev. 20, 159–189 (2000).

    Article  Google Scholar 

  • 63.

    Van Zelm, R., Preiss, P., Van Goethem, T., Van Dingenen, R. & Huijbregts, M. A. J. Regionalized life cycle impact assessment of air pollution on the global scale: damage to human health and vegetation. Atmos. Environ. 134, 129–137 (2016).

    ADS  Article  CAS  Google Scholar 

  • 64.

    Roy, P. O. et al. Characterization factors for terrestrial acidification at the global scale: a systematic analysis of spatial variability and uncertainty. Sci. Total Environ. 500, 270–276 (2014).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 65.

    Helmes, R. J. K., Huijbregts, M. A. J., Henderson, A. D. & Jolliet, O. Spatially explicit fate factors of phosphorous emissions to freshwater at the global scale. Int. J. Life Cycle Assess. 17, 646–654 (2012).

    CAS  Article  Google Scholar 

  • 66.

    VanZelm, R., Huijbregts, M. A. J. & VandeMeent, D. USES-LCA 2.0: aglobal nested multi-media fate, exposure and effects model. Int. J. Life Cycle Assess. 14(30), 282–284 (2009).

    Article  Google Scholar 

  • 67.

    De Baan, L., Alkemade, R. & Köllner, T. Land use impacts on biodiversity in LCA: a global approach. Int. J. Life Cycle Assess. 18, 1216–1230 (2013).

    Article  Google Scholar 

  • 68.

    Curran, M., Hellweg, S. & Beck, J. Is there any empirical support for biodiversity offset policy?. Ecol. Appl. 24, 617–632 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 69.

    Döll, P. & Siebert, S. Global modelling of irrigation water requirements. Water Resour. Res. 38, 1037 (2002).

    ADS  Article  Google Scholar 

  • 70.

    Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. PNAS 109, 3232–3237 (2012).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 71.

    Vieira, M. D. M., Ponsioen, T. C., Goedkoop, M. & Huijbregts, M. A. J. Surplus ore potential as a scarcity indicator for resource extraction. J. Indus. Ecol. 21(2), 381–390 (2016).

    Article  Google Scholar 

  • 72.

    Jungbluth, N., & Frischknecht, R. Cumulative energy demand. In Hischier, R., Weidema, B. (Eds) Implementation of Life Cycle Impact Assessment Methods, St Gallen Ecoinvent Centre, pp. 33–40.

  • 73.

    Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F. et al. ReCiPe 2016: a harmonized life cycle impact assessment method at midpoint and endpoint level report I. Charact. RIVM Rep. 2016–0104 (2016).

  • 74.

    Spinelli, R., Schweier, J. & De Francesco, F. Harvesting techniques for non-industrial biomass plantations. Biosyst. Eng. 113, 319–324 (2012).

    Article  Google Scholar 

  • 75.

    Kwaśniewski, D., Mudryk, K. & Wróbel, M. Zbiór wierzby energetycznej z użyciem piły łańcuchowej. Inżynieria Rolnicza 13, 271–277 (2006).

    Google Scholar 

  • 76.

    Wiloso, E. I. et al. Production of sorghum pellets for electricity generation in Indonesia: a life cycle assessment. Biofuel Res. J. 27, 1178–1194 (2020).

    Article  Google Scholar 

  • 77.

    Yang, Y. & Tilman, D. Soil and root carbon storage is key to climate benefits of bioenergy crops. Biofuel Res. J. 26, 1143–1148 (2020).

    Article  Google Scholar 

  • 78.

    Heller, M. C., Keoleian, G. A., Mann, M. K. & Volk, T. A. Life cycle energy and environmental benefits of generating electricity from willow biomass. Renew. Energy 29(7), 1023–1042 (2004).

    CAS  Article  Google Scholar 

  • 79.

    Fernandez-Tirado, F. & Parra-Lo´pez C, Calatrava-Requena JA, ,. methodological proposal for life cycle inventory of fertilization in energy crops: the case of Argentinean soybean and Spanish rapeseed. Biomass Bioenergy 58, 104–116 (2013).

    CAS  Article  Google Scholar 

  • 80.

    Goglioa, P. & Owende, P. M. O. A screening LCA of short rotation coppice willow (Salix sp.) feedstock production system for small-scale electricity generation. Biosyst. Eng. 103, 389–394 (2009).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    An aggressive market-driven model for US fusion power development

    King Climate Action Initiative announces new research to test and scale climate solutions