in

Estimation of tuna population by the improved analytical pipeline of unique molecular identifier-assisted HaCeD-Seq (haplotype count from eDNA)

  • 1.

    Garlapati, D., Charankumar, B., Ramu, K., Madeswaran, P. & Ramana Murthy, M. V. A review on the applications and recent advances in environmental DNA (eDNA) metagenomics. Rev. Environ. Sci. Biotechnol. 18, 389–411 (2019).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R. M. & Gough, K. C. REVIEW: The detection of aquatic animal species using environmental DNA—a review of eDNA as a survey tool in ecology. J. Appl. Ecol. 51, 1450–1459 (2014).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).

    Article 

    Google Scholar 

  • 4.

    Thomsen, P. F. & Willerslev, E. Environmental DNA—an emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).

    Article 

    Google Scholar 

  • 5.

    Knudsen, S. W. et al. Species-specific detection and quantification of environmental DNA from marine fishes in the Baltic Sea. J. Exp. Mar. Biol. Ecol. 510, 31–45 (2019).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Salter, I., Joensen, M., Kristiansen, R., Steingrund, P. & Vestergaard, P. Environmental DNA concentrations are correlated with regional biomass of Atlantic cod in oceanic waters. Commun. Biol. 2, 1–9 (2019).

    Article 
    CAS 

    Google Scholar 

  • 7.

    Stoeckle, M. Y. et al. Trawl and eDNA assessment of marine fish diversity, seasonality, and relative abundance in coastal New Jersey, USA. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsaa225 (2020).

    Article 

    Google Scholar 

  • 8.

    Maruyama, A., Nakamura, K., Yamanaka, H., Kondoh, M. & Minamoto, T. The release rate of environmental DNA from juvenile and adult fish. PLoS ONE 9, e114639 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 9.

    Jane, S. F. et al. Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams. Mol. Ecol. Resour. 15, 216–227 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Yoshitake, K. et al. HaCeD-Seq: a novel method for reliable and easy estimation about the fish population using haplotype count from eDNA. Mar. Biotechnol. N. Y. 21, 813–820 (2019).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Kinde, I., Wu, J., Papadopoulos, N., Kinzler, K. W. & Vogelstein, B. Detection and quantification of rare mutations with massively parallel sequencing. Proc. Natl. Acad. Sci. 108, 9530–9535 (2011).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Casbon, J. A., Osborne, R. J., Brenner, S. & Lichtenstein, C. P. A method for counting PCR template molecules with application to next-generation sequencing. Nucleic Acids Res. 39, e81–e81 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods 9, 72–74 (2012).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Vander Heiden, J. A. et al. pRESTO: a toolkit for processing high-throughput sequencing raw reads of lymphocyte receptor repertoires. Bioinformatics 30, 1930–1932 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Shugay, M. et al. MAGERI: Computational pipeline for molecular-barcoded targeted resequencing. PLOS Comput. Biol. 13, e1005480 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 16.

    Clement, K., Farouni, R., Bauer, D. E. & Pinello, L. AmpUMI: design and analysis of unique molecular identifiers for deep amplicon sequencing. Bioinformatics 34, i202–i210 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Kumar, G., Kocour, M. & Kunal, S. P. Mitochondrial DNA variation and phylogenetic relationships among five tuna species based on sequencing of D-loop region. Mitochondrial DNA Part A 27, 1976–1980 (2016).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Nomura, S. et al. Genetic population structure of the Pacific bluefin tuna Thunnus orientalis and the yellowfin tuna Thunnus albacares in the North Pacific Ocean. Fish. Sci. 80, 1193–1204 (2014).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Gleiss, A. C., Schallert, R. J., Dale, J. J., Wilson, S. G. & Block, B. A. Direct measurement of swimming and diving kinematics of giant Atlantic bluefin tuna (Thunnus thynnus). R. Soc. Open Sci. 6, 190203 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Juan-Jordá, M. J., Mosqueira, I., Freire, J. & Dulvy, N. K. The conservation and management of tunas and their relatives: setting life history research priorities. PLoS ONE 8, e70405 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 21.

    Shibata, M. et al. Transcriptomic features associated with energy production in the muscles of Pacific bluefin tuna and Pacific cod. Biosci. Biotechnol. Biochem. 80, 1114–1124 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Swanson, D., Block, R. & Mousa, S. A. Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv. Nutr. Bethesda Md 3, 1–7 (2012).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Collette, B. B. et al. Conservation. High value and long life–double jeopardy for tunas and billfishes. Science 333, 291–292 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Kumai, H. & Miyashita, S. Life cycle of the Pacific bluefin tuna is completed under reared condition. Nippon Suisan Gakkaishi Jpn. 69, 124–127 (2003).

    Article 

    Google Scholar 

  • 25.

    Miyashita, S. et al. Maturation and spawning of cultured bluefin tuna, Thunnus thynnus. Suisanzoushoku Jpn. 48, 475–488 (2000).

    Google Scholar 

  • 26.

    Cho, J. et al. Production performance of Pacific bluefin tuna Thunnus orientalis larvae and juveniles fed commercial diets and effects of switching diets. Aquac. Sci. 64, 359–370 (2016).

    CAS 

    Google Scholar 

  • 27.

    Tsuji, S. et al. Environmental DNA analysis shows high potential as a tool for estimating intraspecific genetic diversity in a wild fish population. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13165 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 28.

    Tsuji, S. et al. Evaluating intraspecific genetic diversity using environmental DNA and denoising approach: a case study using tank water. Environ. DNA 2, 42–52 (2020).

    Article 

    Google Scholar 

  • 29.

    Ppyun, H. et al. Improved PCR performance and fidelity of double mutant Neq A523R/N540R DNA polymerase. Enzym. Microb. Technol. 82, 197–204 (2016).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Article 

    Google Scholar 

  • 31.

    Myers, R. A. & Worm, B. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Worm, B. et al. Rebuilding global fisheries. Science 325, 578–585 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Bravington, M., Grewe, P. & Davies, C. Fishery-independent estimate of spawning biomass of southern bluefin tuna through identification of close-kin using genetic markers. FRDC Report2007034CSIRO Aust. (2014).

  • 34.

    Bravington, M. V., Grewe, P. M. & Davies, C. R. Absolute abundance of southern bluefin tuna estimated by close-kin mark-recapture. Nat. Commun. 7, 13162 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Song, N., Jia, N., Yanagimoto, T., Lin, L. & Gao, T. Genetic differentiation of Trachurus japonicus from the Northwestern Pacific based on the mitochondrial DNA control region. Mitochondrial DNA 24, 705–712 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Zhu, Y., Cheng, Q. & Rogers, S. M. Genetic structure of Scomber japonicus (Perciformes: Scombridae) along the coast of China revealed by complete mitochondrial cytochrome b sequences. Mitochondrial DNA Part DNA Mapp. Seq. Anal. 27, 3828–3836 (2016).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Tzeng, T.-D. Population structure and historical demography of the spotted mackerel (Scomber australasicus) off Taiwan inferred from mitochondrial control region sequencing. Zool. Stud. 8, 656–663 (2007).

    Google Scholar 

  • 38.

    Ichinokawa, M., Okamura, H. & Kurota, H. The status of Japanese fisheries relative to fisheries around the world. ICES J. Mar. Sci. 74, 1277–1287 (2017).

    Article 

    Google Scholar 

  • 39.

    Pikitch, E. K. et al. Ecosystem-based fishery management. Science 305, 346–347 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Yates, M. C., Fraser, D. J. & Derry, A. M. Meta-analysis supports further refinement of eDNA for monitoring aquatic species-specific abundance in nature. Environ. DNA 1, 5–13 (2019).

    Article 

    Google Scholar 

  • 41.

    Lacoursière Roussel, A., Rosabal, M. & Bernatchez, L. Estimating fish abundance and biomass from eDNA concentrations: variability among capture methods and environmental conditions. Mol. Ecol. Resour. 16, 1401–1414 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 42.

    Yamamoto, S. et al. Environmental DNA as a ‘Snapshot’ of fish distribution: a case study of Japanese jack mackerel in Maizuru bay, Sea of Japan. PLoS ONE 11, e0149786 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 43.

    Untergasser, A. et al. Primer3–new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Sekino, M. & Yamashita, H. Mitochondrial DNA barcoding for Okinawan oysters: a cryptic population of the Portuguese oyster Crassostrea angulata in Japanese waters. Fish. Sci. 79, 61–76 (2013).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Minamoto, T., Naka, T., Moji, K. & Maruyama, A. Techniques for the practical collection of environmental DNA: filter selection, preservation, and extraction. Limnology 17, 23–32 (2016).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Late Pleistocene South American megafaunal extinctions associated with rise of Fishtail points and human population

    Effects of temperature and phytoplankton community composition on subitaneous and resting egg production rates of Acartia omorii in Tokyo Bay