in

Estimation of tuna population by the improved analytical pipeline of unique molecular identifier-assisted HaCeD-Seq (haplotype count from eDNA)

  • 1.

    Garlapati, D., Charankumar, B., Ramu, K., Madeswaran, P. & Ramana Murthy, M. V. A review on the applications and recent advances in environmental DNA (eDNA) metagenomics. Rev. Environ. Sci. Biotechnol. 18, 389–411 (2019).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R. M. & Gough, K. C. REVIEW: The detection of aquatic animal species using environmental DNA—a review of eDNA as a survey tool in ecology. J. Appl. Ecol. 51, 1450–1459 (2014).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).

    Article 

    Google Scholar 

  • 4.

    Thomsen, P. F. & Willerslev, E. Environmental DNA—an emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).

    Article 

    Google Scholar 

  • 5.

    Knudsen, S. W. et al. Species-specific detection and quantification of environmental DNA from marine fishes in the Baltic Sea. J. Exp. Mar. Biol. Ecol. 510, 31–45 (2019).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Salter, I., Joensen, M., Kristiansen, R., Steingrund, P. & Vestergaard, P. Environmental DNA concentrations are correlated with regional biomass of Atlantic cod in oceanic waters. Commun. Biol. 2, 1–9 (2019).

    Article 
    CAS 

    Google Scholar 

  • 7.

    Stoeckle, M. Y. et al. Trawl and eDNA assessment of marine fish diversity, seasonality, and relative abundance in coastal New Jersey, USA. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsaa225 (2020).

    Article 

    Google Scholar 

  • 8.

    Maruyama, A., Nakamura, K., Yamanaka, H., Kondoh, M. & Minamoto, T. The release rate of environmental DNA from juvenile and adult fish. PLoS ONE 9, e114639 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 9.

    Jane, S. F. et al. Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams. Mol. Ecol. Resour. 15, 216–227 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Yoshitake, K. et al. HaCeD-Seq: a novel method for reliable and easy estimation about the fish population using haplotype count from eDNA. Mar. Biotechnol. N. Y. 21, 813–820 (2019).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Kinde, I., Wu, J., Papadopoulos, N., Kinzler, K. W. & Vogelstein, B. Detection and quantification of rare mutations with massively parallel sequencing. Proc. Natl. Acad. Sci. 108, 9530–9535 (2011).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Casbon, J. A., Osborne, R. J., Brenner, S. & Lichtenstein, C. P. A method for counting PCR template molecules with application to next-generation sequencing. Nucleic Acids Res. 39, e81–e81 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods 9, 72–74 (2012).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Vander Heiden, J. A. et al. pRESTO: a toolkit for processing high-throughput sequencing raw reads of lymphocyte receptor repertoires. Bioinformatics 30, 1930–1932 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Shugay, M. et al. MAGERI: Computational pipeline for molecular-barcoded targeted resequencing. PLOS Comput. Biol. 13, e1005480 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 16.

    Clement, K., Farouni, R., Bauer, D. E. & Pinello, L. AmpUMI: design and analysis of unique molecular identifiers for deep amplicon sequencing. Bioinformatics 34, i202–i210 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Kumar, G., Kocour, M. & Kunal, S. P. Mitochondrial DNA variation and phylogenetic relationships among five tuna species based on sequencing of D-loop region. Mitochondrial DNA Part A 27, 1976–1980 (2016).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Nomura, S. et al. Genetic population structure of the Pacific bluefin tuna Thunnus orientalis and the yellowfin tuna Thunnus albacares in the North Pacific Ocean. Fish. Sci. 80, 1193–1204 (2014).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Gleiss, A. C., Schallert, R. J., Dale, J. J., Wilson, S. G. & Block, B. A. Direct measurement of swimming and diving kinematics of giant Atlantic bluefin tuna (Thunnus thynnus). R. Soc. Open Sci. 6, 190203 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Juan-Jordá, M. J., Mosqueira, I., Freire, J. & Dulvy, N. K. The conservation and management of tunas and their relatives: setting life history research priorities. PLoS ONE 8, e70405 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 21.

    Shibata, M. et al. Transcriptomic features associated with energy production in the muscles of Pacific bluefin tuna and Pacific cod. Biosci. Biotechnol. Biochem. 80, 1114–1124 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Swanson, D., Block, R. & Mousa, S. A. Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv. Nutr. Bethesda Md 3, 1–7 (2012).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Collette, B. B. et al. Conservation. High value and long life–double jeopardy for tunas and billfishes. Science 333, 291–292 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Kumai, H. & Miyashita, S. Life cycle of the Pacific bluefin tuna is completed under reared condition. Nippon Suisan Gakkaishi Jpn. 69, 124–127 (2003).

    Article 

    Google Scholar 

  • 25.

    Miyashita, S. et al. Maturation and spawning of cultured bluefin tuna, Thunnus thynnus. Suisanzoushoku Jpn. 48, 475–488 (2000).

    Google Scholar 

  • 26.

    Cho, J. et al. Production performance of Pacific bluefin tuna Thunnus orientalis larvae and juveniles fed commercial diets and effects of switching diets. Aquac. Sci. 64, 359–370 (2016).

    CAS 

    Google Scholar 

  • 27.

    Tsuji, S. et al. Environmental DNA analysis shows high potential as a tool for estimating intraspecific genetic diversity in a wild fish population. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13165 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 28.

    Tsuji, S. et al. Evaluating intraspecific genetic diversity using environmental DNA and denoising approach: a case study using tank water. Environ. DNA 2, 42–52 (2020).

    Article 

    Google Scholar 

  • 29.

    Ppyun, H. et al. Improved PCR performance and fidelity of double mutant Neq A523R/N540R DNA polymerase. Enzym. Microb. Technol. 82, 197–204 (2016).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Article 

    Google Scholar 

  • 31.

    Myers, R. A. & Worm, B. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Worm, B. et al. Rebuilding global fisheries. Science 325, 578–585 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Bravington, M., Grewe, P. & Davies, C. Fishery-independent estimate of spawning biomass of southern bluefin tuna through identification of close-kin using genetic markers. FRDC Report2007034CSIRO Aust. (2014).

  • 34.

    Bravington, M. V., Grewe, P. M. & Davies, C. R. Absolute abundance of southern bluefin tuna estimated by close-kin mark-recapture. Nat. Commun. 7, 13162 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Song, N., Jia, N., Yanagimoto, T., Lin, L. & Gao, T. Genetic differentiation of Trachurus japonicus from the Northwestern Pacific based on the mitochondrial DNA control region. Mitochondrial DNA 24, 705–712 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Zhu, Y., Cheng, Q. & Rogers, S. M. Genetic structure of Scomber japonicus (Perciformes: Scombridae) along the coast of China revealed by complete mitochondrial cytochrome b sequences. Mitochondrial DNA Part DNA Mapp. Seq. Anal. 27, 3828–3836 (2016).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Tzeng, T.-D. Population structure and historical demography of the spotted mackerel (Scomber australasicus) off Taiwan inferred from mitochondrial control region sequencing. Zool. Stud. 8, 656–663 (2007).

    Google Scholar 

  • 38.

    Ichinokawa, M., Okamura, H. & Kurota, H. The status of Japanese fisheries relative to fisheries around the world. ICES J. Mar. Sci. 74, 1277–1287 (2017).

    Article 

    Google Scholar 

  • 39.

    Pikitch, E. K. et al. Ecosystem-based fishery management. Science 305, 346–347 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Yates, M. C., Fraser, D. J. & Derry, A. M. Meta-analysis supports further refinement of eDNA for monitoring aquatic species-specific abundance in nature. Environ. DNA 1, 5–13 (2019).

    Article 

    Google Scholar 

  • 41.

    Lacoursière Roussel, A., Rosabal, M. & Bernatchez, L. Estimating fish abundance and biomass from eDNA concentrations: variability among capture methods and environmental conditions. Mol. Ecol. Resour. 16, 1401–1414 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 42.

    Yamamoto, S. et al. Environmental DNA as a ‘Snapshot’ of fish distribution: a case study of Japanese jack mackerel in Maizuru bay, Sea of Japan. PLoS ONE 11, e0149786 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 43.

    Untergasser, A. et al. Primer3–new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Sekino, M. & Yamashita, H. Mitochondrial DNA barcoding for Okinawan oysters: a cryptic population of the Portuguese oyster Crassostrea angulata in Japanese waters. Fish. Sci. 79, 61–76 (2013).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Minamoto, T., Naka, T., Moji, K. & Maruyama, A. Techniques for the practical collection of environmental DNA: filter selection, preservation, and extraction. Limnology 17, 23–32 (2016).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Mature Andean forests as globally important carbon sinks and future carbon refuges

    Negative emissions, positive economy