Research area
The study was conducted in the Yunyang Experimental Station (108° 54′ E, 30° 55′ N; altitude of 700 m), Southwest University, Chongqing, China. The study area has a subtropical monsoon humid climate with an average annual sunshine duration of 1500 h, average annual temperature of 18.4 °C average annual rainfall of 1100.1 mm, and the rain period predominantly prolongs from June to September. Local soil type is clay loam in texture and Dystric Purple-Udic Cambosols according to the Chinese Soil Taxonomy (CRGCST 2001). Basic properties of 0–20 cm soil layer were as follows: pH 7.29, total N 0.94 g kg−1, total C 7.14 g kg−1, available N 37.45 mg kg−1, available P 2.36 mg kg−1, and available K 72.58 mg kg−1, respectively.
The tested biochar was purchased from the Nanjing Qinfeng Straw Technology Co., Ltd. (Nanjing, China), which was made by pyrolysis of the rice (Oryza sativa L.) straw with limited oxygen supply at 500 °C for 2 h. Its properties were as follows: total N 0.61 g kg−1, total P 1.99 g kg−1, total K 27.15 g kg−1, total C 537.97 g kg−1 and pH 8.70.
Experimental design
A two-year filed experiment (2017–2019) was performed in a completely randomized design with twelve treatments in triplicates including two factors. The first factor was the application of biochar including B0 (0 t ha−1), B10 (10 t ha−1), B20 (20 t ha−1) and B40 (40 t ha−1); and the second factor is the application level N fertilizer including conventional rate (application amount by local farmers)-180 kg N ha−1 (N100), 80% of conventional rate-144 kg N ha−1 (N80) and 60% of conventional rate-108 kg N ha−1 (N60). The plot size was 3 m × 6 m with a border (0.5 m wide) between plots. Biochar was applied to soil only in the first year before the sowing of rapeseed. Each treatment plot received the same amount of potassium (90 kg K2O ha−1) and phosphorus (90 kg P2O5 ha−1). Further details of fertilizer application have been reported by Tian et al.24, being the same for the two-year experiment. Weed, pesticide, and pest management kept the same with the local farmers’ rapeseed management practices. Winter rapeseed (Sanxiayou No.5) was used in the experiment, which was sowed on 21 October 2017 and on 16 October 2018, respectively, and was harvested on 1 May in both years (2018 and 2019).
Sampling and analysis of soil and crop
Crop yield
Rapeseed was hand-harvested when 70–80% of total seeds changed their color from green to black on 1 May 2019, and each plot was separately harvested for seed yield. Seed yield was calculated using 6% as standard seed moisture content.
Soil indices
After the rapeseed harvest, soil samples were collected from all plots. Five sampling points were randomly selected within each plot. At each point, twenty soil cores of 2.5 cm diameter and 20.0 cm depth were taken in a 1 m radius of the point. All soil cores from each point were put in a plastic bag and thoroughly bulked, crumbled and mixed for physical, chemical and biological analyses. By dividing each soil sample into two subsamples, one subsample was ground, passed through a 2-mm sieve and was air-dried for the analyses of soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), alkali-hydrolyzale nitrogen (AN), available phosphorus (AP), available potassium (AK)25, particulate organic carbon (POC), water-soluble organic carbon (DOC), easily oxidized organic carbon (AOC)26, sucrase (SUC) and urease (URE)27, and another one was ground, passed through a 2-mm sieve and was stored in a refrigerator at − 20 °C for the analyses of structural and functional characteristics of soil microbial community28. At the same time, mixed soil samples (0–20 cm) from five points in each plot were taken using a shovel for soil aggregates analyses24.
Drying method was used to determine soil water content (SWC); soil temperature (ST) was measured by temperature probe on the LI6400–09 (LI-COR Inc., Lincoln, NE); potassium dichromate oxidation method was used to determine SOM and DOC content; TN was measured by the Kjeldahl method; TP was determined by Mo-Sb colorimetric method; TK was determined by NaOH melting and analyzed using an atomic spectrophotometry; AN was determined by diffusion-absorption method; AP was quantified by colorimetric analysis following extraction of soil with 0.5 mol L−1 NaHCO3; AK was measured using 1.0 mol L−1 CH3COONH4 extraction; POC was determined by sodium hexametaphosphate dispersion method; AOC was measured by potassium permanganate oxidation method; SUC was measured by 3,5-dinitrosalicylic acid colorimetric determination method; URE was measured by phenol-sodium hypochlorite indophenol colorimetry method; amount of bacteria (B), fungi (F), actinomycetes (A), gram-positive bacteria (GP), gram-negative bacteria (GN) was measured by the Bligh–Dyer method; utilization of sugars (S), amino acids (AA), phenolic acids (PA), carboxylic acids (CA), amines (AM) and polymers (P) by microorganism was measured using commercial Biolog EcoPlate (Biolog Inc., CA, USA).
Shannon index (H), Simpson index (D), and evenness index (E) were calculated by the following equations:
$$ {text{AWCD}} = sum {(C_{i} – R_{i} )} /n $$
$$ {text{H}} = – sum {P_{i} } (ln P_{i} )quad P_{i} = (C_{i} – R_{i} )/sum {(C_{i} – R_{i} } ) $$
$$ {text{D}} = 1 – sum P _{i}^{2} $$
$$ {text{E}} = {text{H}}/ln {text{S}} $$
where n is the 31 carbon sources on the ECO board; Ci and Ri and are the optical density values of the microwell and the control well respectively; Pi is the ratio of the absorbance of a particular well i to the sums of absorbance of all 31well at 120 h; S is the number of color change holes, which represents the number of carbon source used by the microbial community; Average well color development (AWCD), representing the overall carbon substrate utilization potential of cultural microbial communities across all wells per plate.
In order to investigate the aggregate structure, all bulk clod samples from each plot were carefully mixed and then gently sieved to pass through a 10-mm sieve. According to the wet-sieving and dry-sieving protocol, the tested soil was fractionated into > 5, 2 ~ 5, 1 ~ 2, 0.25 ~ 1 and < 0.25 mm aggregates, respectively. All separated aggregates were dried in oven at 60 °C for determining their properties. Macroaggregate content (R), average weight diameter (MWD) and geometric mean diameter (GMD) were calculated by the following equations:
$$ {text{DR}}_{{0.25}} = left( {{text{WR}}_{{0.25}} } right) = frac{{sumnolimits_{{i = 1}}^{n} {left( {w_{i} > 0.25} right)} }}{{sumnolimits_{{i = 1}}^{n} {(w_{i} )} }} times 100% $$
$$ {text{D – MWD}}left( {{text{W – MWD}}} right) = sumlimits_{{i = 1}}^{n} {(bar{d}_{i} w_{i} )} $$
$$ {text{D – GMD}}left( {{text{W – GMD}}} right) = exp left[ {frac{{sumlimits_{{i = 1}}^{n} {m_{i} ln bar{d}_{i} } }}{{sumlimits_{{i = 1}}^{n} {m_{i} } }}} right] $$
where DR0.25 and WR0.25 are the proportion of > 0.25 mm soil mechanical-stable aggregates and water-stable aggregates, respectively; D-MWD and W-MWD are the mean weight diameter of mechanical-stable aggregates and water-stable aggregates (mm), respectively; D-GMD and W-GMD are the mean geometric diameter of mechanical-stable aggregates and water-stable aggregates (mm), respectively; mi is mass in size fraction i; and wi is the proportion (%) of the total sample mass in size fraction i and di is mean diameter of size fraction i.
Evaluation of soil fertility
Grey correlation analysis
Grey correlation analysis refers to a method of quantitative description and comparison of a system’s development and change. The basic idea is to determine whether they are closely connected by determining the geometric similarity of the reference data column and several comparison data columns, which reflects the degree of correlation between the curves29. The grey relational coefficient ξi (k) can be expressed as follows:
$$ xi (k) = frac{{mathop {min }limits_{i} mathop {min }limits_{k} left| {x_{0} (k) – x_{i} (k)} right| + rho mathop {max }limits_{i} mathop {max }limits_{k} left| {x_{0} (k) – x_{i} (k)} right|}}{{left| {x_{0} (k) – x_{i} (k)} right| + rho mathop {max }limits_{i} max left| {mathop {x_{0} (k)}limits_{k} – x_{i} (k)} right|}} $$
$$ x_{i}^{k} = frac{{x_{i}^{k} }}{{mathop {max }limits_{i} x_{i}^{k} }} $$
$$ gamma _{i} = frac{1}{n}sumlimits_{{k = i}}^{n} {xi _{i} } (k) $$
$$ omega _{{i(gamma )}} = frac{1}{n}sumlimits_{{i = 1}}^{n} {gamma _{i} } $$
$$ G_{i}^{k} = sumlimits_{{i = 1}}^{n} {left( {xi _{i} times omega _{{i(gamma )}} } right),quad k = 1,2,3, ldots ,n;quad i = 1,2,3, ldots ,n} $$
where (x_{i}^{k}) The i trait observation value of treatment k; (mathop {max }limits_{i} x_{i}^{k}) The maximum value of the i trait in all treatments; (mathop {min }limits_{i} x_{i}^{k}) The minimum value of the i trait in all treatments; (mathop {min }limits_{i} mathop {min }limits_{k} left| {x_{0} (k) – x_{i} (k)} right|) Second level minimum difference; (mathop {max }limits_{i} mathop {max }limits_{k} left| {x_{0} (k) – x_{i} (k)} right|) Second level maximum difference; (rho) Resolution coefficient (0.5).
Principal component analysis
Principal component analysis refers to a multivariate statistical method that converts multiple indicators into several comprehensive indicators by the idea of dimensionality under the premise of losing little information. It simplifies the complexity in high-dimensional data while retaining trends and patterns30.
Cluster analysis
Cluster analysis comprises a range of methods for classifying multivariate data into subgroups. Using the euclidean distance as a measure of the difference in the fertility of each treatment, the shortest distance method was used to systematically cluster according to the degree of intimacy and similarity of soil fertility levels. By organizing multivariate data into such subgroups, clustering can help reveal the characteristics of any structure or patterns present31.
Statistical analysis
Correlation analysis was performed to assess the relationships between rapeseed yield and soil attributes. Grey correlation analysis and principal component analysis were performed to establish comprehensive score for soil fertility and the main soil factors affecting rapeseed yield. Cluster analysis was used to cluster the soil fertility of each treatment. All the statistical analyses were performed using Excel 2018 (Office Software, Inc., Beijing, China) and SPSS 17.0 (SPSS Inc., Chicago, Illinois, USA). The comparisons of treatment means were based on LSD test at the P < 0.05 probability level.
Ethics statement
Identifies Southwest University that approved the collection of plant or seed specimens.
Confirms that all methods were carried out in accordance with relevant guidelines and regulations.
Source: Ecology - nature.com