in

Evidence for use of both capital and income breeding strategies in the mangrove tree crab, Aratus pisonii

  • 1.

    Mendo, T., Semmens, J. M., Lyle, J. M., Tracey, S. R. & Moltschaniwskyj, N. Reproductive strategies and energy sources fueling reproductive growth in a protracted spawner. Mar. Biol. 163, 2 (2016).

    Article 

    Google Scholar 

  • 2.

    Stephens, P. A., Boyd, I. L., McNamara, J. M. & Houston, A. I. Capital breeding and income breeding: their meaning, measurement, and worth. Ecology 90, 2057–2067 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Bonnet, X., Bradshaw, D. & Shine, R. Capital versus income breeding: An ectothermic perspective. Oikos 83, 333–342 (1998).

    Article 

    Google Scholar 

  • 4.

    Johnson, R. A. Capital and income breeding and the evolution of colony founding strategies in ants. Insectes Soc. 53, 316–322 (2006).

    Article 

    Google Scholar 

  • 5.

    Wheatley, K. E., Bradshaw, C. J., Harcourt, R. G. & Hindell, M. A. Feast or famine: Evidence for mixed capital–income breeding strategies in Weddell seals. Oecologia 155, 11–20 (2008).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Tammaru, T. & Haukioja, E. Capital breeders and income breeders among Lepidoptera: Consequences to population dynamics. Oikos 77, 561–564 (1996).

    Article 

    Google Scholar 

  • 7.

    McHuron, E. A., Costa, D. P., Schwarz, L. & Mangel, M. State-dependent behavioural theory for assessing the fitness consequences of anthropogenic disturbance on capital and income breeders. Methods Ecol. Evol. 8, 552–560 (2017).

    Article 

    Google Scholar 

  • 8.

    Williams, C. T. et al. Seasonal reproductive tactics: Annual timing and the capital-to-income breeder continuum. Philos. Trans. R. Soc. B 372, 20160250 (2017).

    Article 

    Google Scholar 

  • 9.

    Kerby, J. & Post, E. Capital and income breeding traits differentiate trophic match–mismatch dynamics in large herbivores. Philos. Trans. R. Soc. B 368, 20120484 (2013).

    Article 

    Google Scholar 

  • 10.

    Zeng, Y., McLay, C. & Yeo, D. C. Capital or income breeding crabs: Who are the better invaders?. Crustaceana 87, 1648–1656 (2014).

    Article 

    Google Scholar 

  • 11.

    Griffen, B. D. The timing of energy allocation to reproduction in an important group of marine consumers. PLoS ONE 13, e0199043 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 12.

    Boudreau, S. A. & Worm, B. Ecological role of large benthic decapods in marine ecosystems: A review. Mar. Ecol. Prog. Ser. 469, 195–213 (2012).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Holland, D. S. & Kasperski, S. The impact of access restrictions on fishery income diversification of US West Coast fishermen. Coast. Manag. 44, 452–463 (2016).

    Article 

    Google Scholar 

  • 14.

    Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884 (2004).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Anilkumar, G. Reproductive physiology of female crustaceans. Ph.D. thesis, University of Calicut, India (1980).

  • 16.

    Lovrich, G. A., Romero, M. C., Tapella, F. & Thatje, S. Distribution, reproductive and energetic conditions of decapod crustaceans along the Scotia Arc (Southern Ocean). Sci. Mar. 69, 183–193 (2005).

    Article 

    Google Scholar 

  • 17.

    Sainmont, J., Andersen, K. H., Varpe, Ø. & Visser, A. W. Capital versus income breeding in a seasonal environment. Am. Nat. 184, 466–476 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Griffen, B. D. Metabolic costs of capital energy storage in a small-bodied ectotherm. Ecol. Evol. 7, 2423–2431 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Varpe, Ø., Jørgensen, C., Tarling, G. A. & Fiksen, Ø. The adaptive value of energy storage and capital breeding in seasonal environments. Oikos 118, 363–370 (2009).

    Article 

    Google Scholar 

  • 20.

    Varpe, Ø., Jørgensen, C., Tarling, G. A. & Fiksen, Ø. Early is better: Seasonal egg fitness and timing of reproduction in a zooplankton life-history model. Oikos 116, 331–1342 (2007).

    Article 

    Google Scholar 

  • 21.

    Warner, G. F. The life history of the mangrove tree crab, Aratus pisoni. J. Zool. 153, 321–335 (1967).

    Article 

    Google Scholar 

  • 22.

    Díaz, H. & Conde, J. E. Population dynamics and life history of the mangrove crab Aratus pisonii (Brachyura, Grapsidae) in a marine environment. Bull. Mar. Sci. 45, 148–163 (1989).

    Google Scholar 

  • 23.

    de Arruda Leme, M. H. & Negreiros-Fransozo, M. L. Reproductive patterns of Aratus pisonii (Decapoda: Grapsidae) from an estuarine area of São Paulo northern coast, Brazil. Rev. Biol. Trop. 46, 673–678 (1998).

    Google Scholar 

  • 24.

    Cannizzo, Z. J., Lang, S. Q., Benitez-Nelson, B. & Griffen, B. D. An artificial habitat increases the reproductive fitness of a range-shifting species within a newly colonized ecosystem. Sci. Rep. 10, 554 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Riley, M. E., Vogel, M. & Griffen, B. D. Fitness-associated consequences of an omnivorous diet for the mangrove tree crab Aratus pisonii. Aquat. Biol. 20, 35–43 (2014).

    Article 

    Google Scholar 

  • 26.

    López, B. & Conde, J. E. Dietary variation in the crab Aratus pisonii (H. Milne Edwards, 1837)(Decapoda, Sesarmidae) in a mangrove gradient in northwestern Venezuela. Crustaceana 86, 1051–1069 (2013).

    Article 

    Google Scholar 

  • 27.

    Erickson, A. A., Feller, I. C., Paul, V. J., Kwiatkowski, L. M. & Lee, W. Selection of an omnivorous diet by the mangrove tree crab Aratus pisonii in laboratory experiments. J. Sea Res. 59, 59–69 (2008).

    ADS 
    Article 

    Google Scholar 

  • 28.

    Beever, J. W., Simberloff, D. & King, L. L. Herbivory and predation by the mangrove tree crab Aratus pisonii. Oecologia 43, 317–328 (1979).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Riley, M. E., Johnston, C. A., Feller, I. C. & Griffen, B. D. Range expansion of Aratus pisonii (mangrove tree crab) into novel vegetative habitats. Southeast. Nat. 13, N43–N48 (2014).

    Article 

    Google Scholar 

  • 30.

    Cannizzo, Z. J. & Griffen, B. D. Changes in spatial behaviour patterns by mangrove tree crabs following climate-induced range shift into novel habitat. Anim. Behav. 121, 79–86 (2016).

    Article 

    Google Scholar 

  • 31.

    Riley, M. E. & Griffen, B. D. Habitat-specific differences alter traditional biogeographic patterns of life history in a climate-change induced range expansion. PLoS ONE 12, e0176263 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 32.

    Cannizzo, Z. J. & Griffen, B. D. An artificial habitat facilitates a climate-mediated range expansion into a suboptimal novel ecosystem. PLoS ONE 14, e0207416 (2019).

    Article 
    CAS 

    Google Scholar 

  • 33.

    Bernardo, J. & Agosta, S. J. Evolutionary implications of hierarchical impacts of nonlethal injury on reproduction, including maternal effects. Biol. J. Linn. Soc. 86, 309–331 (2005).

    Article 

    Google Scholar 

  • 34.

    Griffen, B. D., Cannizzo, Z. J., Carver, J. & Meidell, M. Reproductive and energetic costs of injury in the mangrove tree crab. Mar. Ecol. Prog. Ser. 640, 127–137 (2020).

    ADS 
    Article 

    Google Scholar 

  • 35.

    De Arruda Leme, M. H., De Sousa Soares, V. & Pinheiro, M. A. A. Population dynamics of the mangrove tree crab Aratus pisonii (Brachyura: Sesarmidae) in the estuarine complex of Cananéia-Iguape, São Paulo, Brazil. Pan-Am. J. Aquat. Sci. 9, 259–266 (2014).

    Google Scholar 

  • 36.

    Skov, M. W. et al. Marching to a different drummer: Crabs synchronize reproduction to a 14-month lunar-tidal cycle. Ecology 86, 1164–1171 (2005).

    Article 

    Google Scholar 

  • 37.

    Schmidt, A. J., Bemvenuti, C. E. & Diele, K. Effects of geophysical cycles on the rhythm of mass mate searching of a harvested mangrove crab. Anim. Behav. 84, 333–340 (2012).

    Article 

    Google Scholar 

  • 38.

    Dronkers, J. J. Tidal Computations in Rivers and Coastal Waters (Wiley, 1964).

    Google Scholar 

  • 39.

    Varpe, Ø. Life history adaptations to seasonality. Integr. Comp. Biol. 57, 943–960 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Conde, J. E. et al. Population and life history features of the crab Aratus pisonii (Decapoda: Grapsidae) in a subtropical estuary. Interciencia 25, 151–158 (2000).

    Google Scholar 

  • 41.

    Elner, R. W. & Beninger, P. G. Multiple reproductive strategies in snow crab, Chionoecetes opilio: Physiological pathways and behavioral plasticity. J. Exp. Mar. Biol. Ecol. 193, 93–112 (1995).

    Article 

    Google Scholar 

  • 42.

    Tepolt, C. K. & Somero, G. N. Master of all trades: Thermal acclimation and adaptation of cardiac function in a broadly distributed marine invasive species, the European green crab, Carcinus maenas. J. Exp. Biol. 217, 1129–1138 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Ruiz, G., Fofonoff, P., Steves, B. & Dahlstrom, A. Marine crustacean invasions in North America: a synthesis of historical records and documented impacts. In In the Wrong Place-Alien Marine Crustaceans: Distribution, Biology and Impacts 215–250. (Springer, 2011).

  • 44.

    Griffen, B. D. & Mosblack, H. Predicting diet and consumption rate differences between and within species using gut ecomorphology. J. Anim. Ecol. 80, 854–863 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Cannizzo, Z. J., Dixon, S. R. & Griffen, B. D. An anthropogenic habitat within a suboptimal colonized ecosystem provides improved conditions for a range-shifting species. Ecol. Evol. 8, 1521–1533 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Waging a two-pronged campaign against climate change

    MIT.nano receives American Institute of Architects’s Top Ten Award for sustainable design