Tort, L. Stress and immune modulation in fish. Dev. Comp. Immunol. 35, 1366–1375 (2011).
Google Scholar
Boonstra, R. Reality as the leading cause of stress: Rethinking the impact of chronic stress in nature. Funct. Ecol. 27, 11–23. https://doi.org/10.1111/1365-2435.12008 (2013).
Google Scholar
Öhman, A. Fear and anxiety: Overlaps and dissociations. in Handbook of Emotions (eds M. Lewis, J. M. Haviland-Jones, & L. F. Barrett) 709–728 (The Guilford Press, 2008).
Maydych, V. et al. Impact of chronic and acute academic stress on lymphocyte subsets and monocyte function. PLoS One 12, e0188108 (2017).
Clinchy, M., Sheriff, M. J. & Zanette, L. Y. Predator-induced stress and the ecology of fear. Funct. Ecol. 27, 56–65. https://doi.org/10.1111/1365-2435.12007 (2013).
Google Scholar
Allen-Hermanson, S. Insects and the problem of simple minds: Are bees natural zombies? J. Philos. 105, 389–415 (2008).
Google Scholar
Loukola, O. J., Perry, C. J., Coscos, L. & Chittka, L. Bumblebees show cognitive flexibility by improving on an observed complex behavior. Science 355, 833–836 (2017).
Google Scholar
Perry, C. J. & Baciadonna, L. Studying emotion in invertebrates: what has been done, what can be measured and what they can provide. J. Exp. Biol. 220, 3856–3868 (2017).
Google Scholar
Darwin, C. The Expression of the Emotions in Man and Animals. (John Murray, 1872).
Anderson, D. J. & Adolphs, R. A framework for studying emotions across species. Cell 157, 187–200 (2014).
Google Scholar
Mendl, M., Paul, E. S. & Chittka, L. Animal behaviour: Emotion in invertebrates?. Curr. Biol. 21, R463–R465 (2011).
Google Scholar
Kita, S. et al. peiDoes conditioned taste aversion learning in the pond snail Lymnaea stagnalis produce conditioned fear? Biol. Bull. 220, 71–81 (2011).
Google Scholar
Bateson, M., Desire, S., Gartside, S. E. & Wright, G. A. Agitated honeybees exhibit pessimistic cognitive biases. Curr. Biol. 21, 1070–1073. https://doi.org/10.1016/j.cub.2011.05.017 (2011).
Perry, C. J., Baciadonna, L. & Chittka, L. Unexpected rewards induce dopamine-dependent positive emotion–like state changes in bumblebees. Science 353, 1529. https://doi.org/10.1126/science.aaf4454 (2016).
Google Scholar
Cannon, W. B. The Wisdom of the Body. (Norton & Co., 1939).
Jansen, A. S. P., Van Nguyen, X., Karpitskiy, V., Mettenleiter, T. C. & Loewy, A. D. Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science 270, 644–646 (1995).
Google Scholar
Burnovicz, A., Oliva, D. & Hermitte, G. The cardiac response of the crab Chasmagnathus granulatus as an index of sensory perception. J. Exp. Biol. 212, 313–324 (2009).
Google Scholar
Brod, S., Rattazzi, L., Piras, G. & D’Acquisto, F. ‘As above, so below’ examining the interplay between emotion and the immune system. Immunology 143, 311–318 (2014).
Google Scholar
Höglund, C. O. et al. Changes in immune regulation in response to examination stress in atopic and healthy individuals. Clin. Exp. Allergy 36, 982–992 (2006).
Google Scholar
Mydlarz, L. D., Jones, L. E. & Harvell, C. D. Innate immunity, environmental drivers, and disease ecology of marine and freshwater invertebrates. Annu. Rev. Ecol. Evol. S. 37, 251–288 (2006).
Google Scholar
Beck, G. & Habicht, G. S. Immunity and the invertebrates. Sci. Am. 275, 60–66 (1996).
Google Scholar
Chia, F.-S. & Xing, J. Echinoderm coelomocytes. Zool. Stud. 35, 231–254 (1996).
Pinsino, A. & Matranga, V. Sea urchin immune cells as sentinels of environmental stress. Dev. Comp. Immunol. 49, 198–205 (2015).
Google Scholar
Smith, A. B. Fossil evidence for the relationships of extant echinoderm classes and their times of divergence. in Echinoderm Phylogeny and Evolutionary Biology (eds C.R.C. Paul & A.B. Smith) 85–97 (Clarendon Press, 1988).
Gliński, Z. & Jarosz, J. Immune phenomena in echinoderms. Arch. Immunol. Ther. Ex. 48, 189–193 (2000).
Muñoz-Chápuli, R., Carmona, R., Guadix, J. A., Macías, D. & Pérez-Pomares, J. M. The origin of the endothelial cells: An evo-devo approach for the invertebrate/vertebrate transition of the circulatory system. Evol. Dev. 7, 351–358 (2005).
Google Scholar
Matranga, V., Pinsino, A., Celi, M., Di Bella, G. & Natoli, A. Impacts of UV-B radiation on short-term cultures of sea urchin coelomocytes. Mar. Biol. 149, 25–34 (2006).
Google Scholar
Matranga, V. et al. Monitoring chemical and physical stress using sea urchin immune cells. in Echinodermata Vol. 39 (ed V. Matranga) 85–110 (Springer, 2005).
Canicattì, C., D’Ancona, G. & Farina-Lipari, E. The Holothuria polii brown bodies. Ital. J. Zool. 56, 275–283 (1989).
Canicatti, C. & Quaglia, A. Ultrastructure of Holothuria polii encapsulating body. J. Zool. 224, 419–429 (1991).
Google Scholar
Caulier, G., Hamel, J.-F. & Mercier, A. From coelomocytes to colored aggregates: cellular components and processes involved in the immune response of the holothuroid Cucumaria frondosa. Biol. Bull. 239, 95–114 (2020).
Google Scholar
Branco, P. C., Borges, J. C. S., Santos, M. F., Junior, B. E. J. & da Silva, J. R. M. C. The impact of rising sea temperature on innate immune parameters in the tropical subtidal sea urchin Lytechinus variegatus and the intertidal sea urchin Echinometra lucunter. Mar. Environ. Res. 92, 95–101 (2013).
Google Scholar
Wendelaar Bonga, S. E. The stress response in fish. Physiol. Rev. 77, 591–625 (1997).
Google Scholar
Xu, R. A. Annual changes in the steroid levels in the testis and the pyloric caeca of Sclerasterias mollis (Hutton) (Echinodermata: Asteroidea) during the reproductive cycle. Invertebr. Reprod. Dev. 20, 147–152 (1991).
Google Scholar
Binder, A. R. D., Pfaffl, M. W., Hiltwein, F., Geist, J. & Beggel, S. Does environmental stress affect cortisol biodistribution in freshwater mussels? Conserv. Physiol. 7, coz101 (2019).
Pei, S., Dong, S., Wang, F., Tian, X. & Gao, Q. Effects of density on variation in individual growth and differentiation in endocrine response of Japanese sea cucumber (Apostichopus japonicus Selenka). Aquaculture 356, 398–403 (2012).
Google Scholar
Xu, R. A. & Barker, M. F. Annual changes in the steroid levels in the ovaries and the pyloric caeca of Sclerasterias mollis (Echinodermata: Asteroidea) during the reproductive cycle. Comp. Biochem. Phys. A 95, 127–133 (1990).
Google Scholar
Satoh, N., Rokhsar, D. & Nishikawa, T. Chordate evolution and the three-phylum system. Proc. R. Soc. B 281, 20141729 (2014).
Google Scholar
Hamel, J.-F. et al. Active buoyancy adjustment increases dispersal potential in benthic marine animals. J. Anim. Ecol. 88, 820–832 (2019).
Google Scholar
Thompson, R. F. & Spencer, W. A. Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol. Rev. 73, 16 (1966).
Google Scholar
Denson, T. F., Spanovic, M. & Miller, N. Cognitive appraisals and emotions predict cortisol and immune responses: A meta-analysis of acute laboratory social stressors and emotion inductions. Psychol. Bull. 135, 823 (2009).
Google Scholar
Pagán, O. R. The brain: A concept in flux. Philos. Trans. R. Soc. Lond. B 374, 20180383 (2019).
Google Scholar
Durrieu, M., Wystrach, A., Arrufat, P., Giurfa, M. & Isabel, G. Fruit flies can learn non-elemental olfactory discriminations. Proc. R. Soc. B 287, 20201234 (2020).
Google Scholar
Díaz-Balzac, C. A. & García-Arrarás, J. E. Echinoderm Nervous System. (Oxford Research Encyclopedia of Neuroscience. https://doi.org/10.1093/acrefore/9780190264086.013.205, 2018).
Landenberger, D. E. Learning in the Pacific starfish Pisaster giganteus. Anim. Behav. 14, 414–418 (1966).
Google Scholar
McClintock, J. B. & Lawrence, J. M. Photoresponse and associative learning in Luidia clathrata Say (Echinodermata: Asteroidea). Mar. Freshw. Behav. Phys. 9, 13–21 (1982).
Ginsburg, S. & Jablonka, E. The evolution of associative learning: A factor in the Cambrian explosion. J. Theor. Biol. 266, 11–20 (2010).
Google Scholar
Boisseau, R. P., Vogel, D. & Dussutour, A. Habituation in non-neural organisms: Evidence from slime moulds. Proc. R. Soc. B 283, 20160446 (2016).
Google Scholar
Verheggen, F. J., Haubruge, E. & Mescher, M. C. Alarm pheromones—chemical signaling in response to danger. in Vitamins & Hormones: Pheromones Vol. 83 (ed Gerald Litwack) 215–239 (Elsevier, 2010).
Byrne, M. The ultrastructure of the morula cells of Eupentacta quinquesemita (Echinodermata: Holothuroidea) and their role in the maintenance of the extracellular matrix. J. Morphol. 188, 179–189 (1986).
Google Scholar
Melillo, D., Marino, R., Italiani, P. & Boraschi, D. Innate immune memory in invertebrate metazoans: A critical appraisal. Front. Immunol. 9, 1915 (2018).
Google Scholar
Garcia-Arraras, J. E. et al. Cellular mechanisms of intestine regeneration in the sea cucumber, Holothuria glaberrima Selenka (Holothuroidea: Echinodermata). J. Exp. Zool. 281, 288–304 (1998).
Google Scholar
Sun, J. & Bai, Y. Predator-induced stress influences fall armyworm immune response to inoculating bacteria. J. Invertebr. Pathol. 172, 107352. https://doi.org/10.1016/j.jip.2020.107352 (2020).
Google Scholar
Otti, O., Gantenbein-Ritter, I., Jacot, A. & Brinkhof, M. W. G. Immune response increases predation risk. Evolution 66, 732–739. https://doi.org/10.1111/j.1558-5646.2011.01506.x (2012).
Google Scholar
Powell, D. J. & Schlotz, W. Daily life stress and the cortisol awakening response: Testing the anticipation hypothesis. PLoS ONE 7, e52067 (2012).
Blackburn-Munro, G. & Blackburn-Munro, R. Pain in the brain: Are hormones to blame? Trends Endocrin. Met. 14, 20–27 (2003).
Google Scholar
Dedovic, K., Duchesne, A., Andrews, J., Engert, V. & Pruessner, J. C. The brain and the stress axis: The neural correlates of cortisol regulation in response to stress. Neuroimage 47, 864–871 (2009).
Google Scholar
Canero, E. M. & Hermitte, G. New evidence on an old question: Is the “fight or flight” stage present in the cardiac and respiratory regulation of decapod crustaceans? J. Physiol. 108, 174–186 (2014).
Harding, E. J., Paul, E. S. & Mendl, M. Cognitive bias and affective state. Nature 427, 312–312 (2004).
Google Scholar
Gianasi, B. L., Hamel, J.-F., Montgomery, E. M., Sun, J. & Mercier, A. Current knowledge on the biology, ecology, and commercial exploitation of the sea cucumber Cucumaria frondosa. Rev. Fish. Sci. Aquac. https://doi.org/10.1080/23308249.23302020.21839015 (2020).
Google Scholar
Montgomery, E. M. et al. Functional significance and characterization of sexual dimorphism in holothuroids. Invertebr. Reprod. Dev. 62, 191–201 (2018).
Google Scholar
So, J. J., Hamel, J.-F. & Mercier, A. Habitat utilisation, growth and predation of Cucumaria frondosa: implications for an emerging sea cucumber fishery. Fish. Manage. Ecol. 17, 473–484 (2010).
Google Scholar
Legault, C. & Himmelman, J. H. Relation between escape behaviour of benthic marine invertebrates and the risk of predation. J. Exp. Mar. Biol. Ecol. 170, 55–74 (1993).
Google Scholar
Gianasi, B. L., Verkaik, K., Hamel, J.-F. & Mercier, A. Novel use of PIT tags in sea cucumbers: promising results with the commercial species Cucumaria frondosa. PLoS ONE 10, e0127884 (2015).
Wasserstein, R. L., Schirm, A. L. & Lazar, N. A. Moving to a world beyond “p< 0.05”. Am. Stat. 73, 1–19 (2019).
Dushoff, J., Kain, M. P. & Bolker, B. M. I can see clearly now: reinterpreting statistical significance. Methods Ecol. Evol. 10, 756–759 (2019).
Google Scholar
Source: Ecology - nature.com