in

Evidence of anticipatory immune and hormonal responses to predation risk in an echinoderm

  • 1.

    Tort, L. Stress and immune modulation in fish. Dev. Comp. Immunol. 35, 1366–1375 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Boonstra, R. Reality as the leading cause of stress: Rethinking the impact of chronic stress in nature. Funct. Ecol. 27, 11–23. https://doi.org/10.1111/1365-2435.12008 (2013).

    Article 

    Google Scholar 

  • 3.

    Öhman, A. Fear and anxiety: Overlaps and dissociations. in Handbook of Emotions (eds M. Lewis, J. M. Haviland-Jones, & L. F. Barrett) 709–728 (The Guilford Press, 2008).

  • 4.

    Maydych, V. et al. Impact of chronic and acute academic stress on lymphocyte subsets and monocyte function. PLoS One 12, e0188108 (2017).

  • 5.

    Clinchy, M., Sheriff, M. J. & Zanette, L. Y. Predator-induced stress and the ecology of fear. Funct. Ecol. 27, 56–65. https://doi.org/10.1111/1365-2435.12007 (2013).

    Article 

    Google Scholar 

  • 6.

    Allen-Hermanson, S. Insects and the problem of simple minds: Are bees natural zombies? J. Philos. 105, 389–415 (2008).

    Article 

    Google Scholar 

  • 7.

    Loukola, O. J., Perry, C. J., Coscos, L. & Chittka, L. Bumblebees show cognitive flexibility by improving on an observed complex behavior. Science 355, 833–836 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Perry, C. J. & Baciadonna, L. Studying emotion in invertebrates: what has been done, what can be measured and what they can provide. J. Exp. Biol. 220, 3856–3868 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 9.

    Darwin, C. The Expression of the Emotions in Man and Animals. (John Murray, 1872).

  • 10.

    Anderson, D. J. & Adolphs, R. A framework for studying emotions across species. Cell 157, 187–200 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Mendl, M., Paul, E. S. & Chittka, L. Animal behaviour: Emotion in invertebrates?. Curr. Biol. 21, R463–R465 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Kita, S. et al. peiDoes conditioned taste aversion learning in the pond snail Lymnaea stagnalis produce conditioned fear? Biol. Bull. 220, 71–81 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 13.

    Bateson, M., Desire, S., Gartside, S. E. & Wright, G. A. Agitated honeybees exhibit pessimistic cognitive biases. Curr. Biol. 21, 1070–1073. https://doi.org/10.1016/j.cub.2011.05.017 (2011).

  • 14.

    Perry, C. J., Baciadonna, L. & Chittka, L. Unexpected rewards induce dopamine-dependent positive emotion–like state changes in bumblebees. Science 353, 1529. https://doi.org/10.1126/science.aaf4454 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Cannon, W. B. The Wisdom of the Body. (Norton & Co., 1939).

  • 16.

    Jansen, A. S. P., Van Nguyen, X., Karpitskiy, V., Mettenleiter, T. C. & Loewy, A. D. Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science 270, 644–646 (1995).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Burnovicz, A., Oliva, D. & Hermitte, G. The cardiac response of the crab Chasmagnathus granulatus as an index of sensory perception. J. Exp. Biol. 212, 313–324 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 18.

    Brod, S., Rattazzi, L., Piras, G. & D’Acquisto, F. ‘As above, so below’ examining the interplay between emotion and the immune system. Immunology 143, 311–318 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Höglund, C. O. et al. Changes in immune regulation in response to examination stress in atopic and healthy individuals. Clin. Exp. Allergy 36, 982–992 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 20.

    Mydlarz, L. D., Jones, L. E. & Harvell, C. D. Innate immunity, environmental drivers, and disease ecology of marine and freshwater invertebrates. Annu. Rev. Ecol. Evol. S. 37, 251–288 (2006).

    Article 

    Google Scholar 

  • 21.

    Beck, G. & Habicht, G. S. Immunity and the invertebrates. Sci. Am. 275, 60–66 (1996).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Chia, F.-S. & Xing, J. Echinoderm coelomocytes. Zool. Stud. 35, 231–254 (1996).

    Google Scholar 

  • 23.

    Pinsino, A. & Matranga, V. Sea urchin immune cells as sentinels of environmental stress. Dev. Comp. Immunol. 49, 198–205 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Smith, A. B. Fossil evidence for the relationships of extant echinoderm classes and their times of divergence. in Echinoderm Phylogeny and Evolutionary Biology (eds C.R.C. Paul & A.B. Smith) 85–97 (Clarendon Press, 1988).

  • 25.

    Gliński, Z. & Jarosz, J. Immune phenomena in echinoderms. Arch. Immunol. Ther. Ex. 48, 189–193 (2000).

    Google Scholar 

  • 26.

    Muñoz-Chápuli, R., Carmona, R., Guadix, J. A., Macías, D. & Pérez-Pomares, J. M. The origin of the endothelial cells: An evo-devo approach for the invertebrate/vertebrate transition of the circulatory system. Evol. Dev. 7, 351–358 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 27.

    Matranga, V., Pinsino, A., Celi, M., Di Bella, G. & Natoli, A. Impacts of UV-B radiation on short-term cultures of sea urchin coelomocytes. Mar. Biol. 149, 25–34 (2006).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Matranga, V. et al. Monitoring chemical and physical stress using sea urchin immune cells. in Echinodermata Vol. 39 (ed V. Matranga) 85–110 (Springer, 2005).

  • 29.

    Canicattì, C., D’Ancona, G. & Farina-Lipari, E. The Holothuria polii brown bodies. Ital. J. Zool. 56, 275–283 (1989).

    Google Scholar 

  • 30.

    Canicatti, C. & Quaglia, A. Ultrastructure of Holothuria polii encapsulating body. J. Zool. 224, 419–429 (1991).

    Article 

    Google Scholar 

  • 31.

    Caulier, G., Hamel, J.-F. & Mercier, A. From coelomocytes to colored aggregates: cellular components and processes involved in the immune response of the holothuroid Cucumaria frondosa. Biol. Bull. 239, 95–114 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Branco, P. C., Borges, J. C. S., Santos, M. F., Junior, B. E. J. & da Silva, J. R. M. C. The impact of rising sea temperature on innate immune parameters in the tropical subtidal sea urchin Lytechinus variegatus and the intertidal sea urchin Echinometra lucunter. Mar. Environ. Res. 92, 95–101 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Wendelaar Bonga, S. E. The stress response in fish. Physiol. Rev. 77, 591–625 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Xu, R. A. Annual changes in the steroid levels in the testis and the pyloric caeca of Sclerasterias mollis (Hutton) (Echinodermata: Asteroidea) during the reproductive cycle. Invertebr. Reprod. Dev. 20, 147–152 (1991).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Binder, A. R. D., Pfaffl, M. W., Hiltwein, F., Geist, J. & Beggel, S. Does environmental stress affect cortisol biodistribution in freshwater mussels? Conserv. Physiol. 7, coz101 (2019).

  • 36.

    Pei, S., Dong, S., Wang, F., Tian, X. & Gao, Q. Effects of density on variation in individual growth and differentiation in endocrine response of Japanese sea cucumber (Apostichopus japonicus Selenka). Aquaculture 356, 398–403 (2012).

    Article 
    CAS 

    Google Scholar 

  • 37.

    Xu, R. A. & Barker, M. F. Annual changes in the steroid levels in the ovaries and the pyloric caeca of Sclerasterias mollis (Echinodermata: Asteroidea) during the reproductive cycle. Comp. Biochem. Phys. A 95, 127–133 (1990).

    Article 

    Google Scholar 

  • 38.

    Satoh, N., Rokhsar, D. & Nishikawa, T. Chordate evolution and the three-phylum system. Proc. R. Soc. B 281, 20141729 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 39.

    Hamel, J.-F. et al. Active buoyancy adjustment increases dispersal potential in benthic marine animals. J. Anim. Ecol. 88, 820–832 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Thompson, R. F. & Spencer, W. A. Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol. Rev. 73, 16 (1966).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Denson, T. F., Spanovic, M. & Miller, N. Cognitive appraisals and emotions predict cortisol and immune responses: A meta-analysis of acute laboratory social stressors and emotion inductions. Psychol. Bull. 135, 823 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 42.

    Pagán, O. R. The brain: A concept in flux. Philos. Trans. R. Soc. Lond. B 374, 20180383 (2019).

    Article 

    Google Scholar 

  • 43.

    Durrieu, M., Wystrach, A., Arrufat, P., Giurfa, M. & Isabel, G. Fruit flies can learn non-elemental olfactory discriminations. Proc. R. Soc. B 287, 20201234 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 44.

    Díaz-Balzac, C. A. & García-Arrarás, J. E. Echinoderm Nervous System. (Oxford Research Encyclopedia of Neuroscience. https://doi.org/10.1093/acrefore/9780190264086.013.205, 2018).

  • 45.

    Landenberger, D. E. Learning in the Pacific starfish Pisaster giganteus. Anim. Behav. 14, 414–418 (1966).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 46.

    McClintock, J. B. & Lawrence, J. M. Photoresponse and associative learning in Luidia clathrata Say (Echinodermata: Asteroidea). Mar. Freshw. Behav. Phys. 9, 13–21 (1982).

    Google Scholar 

  • 47.

    Ginsburg, S. & Jablonka, E. The evolution of associative learning: A factor in the Cambrian explosion. J. Theor. Biol. 266, 11–20 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 48.

    Boisseau, R. P., Vogel, D. & Dussutour, A. Habituation in non-neural organisms: Evidence from slime moulds. Proc. R. Soc. B 283, 20160446 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 49.

    Verheggen, F. J., Haubruge, E. & Mescher, M. C. Alarm pheromones—chemical signaling in response to danger. in Vitamins & Hormones: Pheromones Vol. 83 (ed Gerald Litwack) 215–239 (Elsevier, 2010).

  • 50.

    Byrne, M. The ultrastructure of the morula cells of Eupentacta quinquesemita (Echinodermata: Holothuroidea) and their role in the maintenance of the extracellular matrix. J. Morphol. 188, 179–189 (1986).

    PubMed 
    Article 

    Google Scholar 

  • 51.

    Melillo, D., Marino, R., Italiani, P. & Boraschi, D. Innate immune memory in invertebrate metazoans: A critical appraisal. Front. Immunol. 9, 1915 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 52.

    Garcia-Arraras, J. E. et al. Cellular mechanisms of intestine regeneration in the sea cucumber, Holothuria glaberrima Selenka (Holothuroidea: Echinodermata). J. Exp. Zool. 281, 288–304 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Sun, J. & Bai, Y. Predator-induced stress influences fall armyworm immune response to inoculating bacteria. J. Invertebr. Pathol. 172, 107352. https://doi.org/10.1016/j.jip.2020.107352 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 54.

    Otti, O., Gantenbein-Ritter, I., Jacot, A. & Brinkhof, M. W. G. Immune response increases predation risk. Evolution 66, 732–739. https://doi.org/10.1111/j.1558-5646.2011.01506.x (2012).

    Article 
    PubMed 

    Google Scholar 

  • 55.

    Powell, D. J. & Schlotz, W. Daily life stress and the cortisol awakening response: Testing the anticipation hypothesis. PLoS ONE 7, e52067 (2012).

  • 56.

    Blackburn-Munro, G. & Blackburn-Munro, R. Pain in the brain: Are hormones to blame? Trends Endocrin. Met. 14, 20–27 (2003).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Dedovic, K., Duchesne, A., Andrews, J., Engert, V. & Pruessner, J. C. The brain and the stress axis: The neural correlates of cortisol regulation in response to stress. Neuroimage 47, 864–871 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 58.

    Canero, E. M. & Hermitte, G. New evidence on an old question: Is the “fight or flight” stage present in the cardiac and respiratory regulation of decapod crustaceans? J. Physiol. 108, 174–186 (2014).

    Google Scholar 

  • 59.

    Harding, E. J., Paul, E. S. & Mendl, M. Cognitive bias and affective state. Nature 427, 312–312 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 60.

    Gianasi, B. L., Hamel, J.-F., Montgomery, E. M., Sun, J. & Mercier, A. Current knowledge on the biology, ecology, and commercial exploitation of the sea cucumber Cucumaria frondosa. Rev. Fish. Sci. Aquac. https://doi.org/10.1080/23308249.23302020.21839015 (2020).

    Article 

    Google Scholar 

  • 61.

    Montgomery, E. M. et al. Functional significance and characterization of sexual dimorphism in holothuroids. Invertebr. Reprod. Dev. 62, 191–201 (2018).

    Article 

    Google Scholar 

  • 62.

    So, J. J., Hamel, J.-F. & Mercier, A. Habitat utilisation, growth and predation of Cucumaria frondosa: implications for an emerging sea cucumber fishery. Fish. Manage. Ecol. 17, 473–484 (2010).

    Article 

    Google Scholar 

  • 63.

    Legault, C. & Himmelman, J. H. Relation between escape behaviour of benthic marine invertebrates and the risk of predation. J. Exp. Mar. Biol. Ecol. 170, 55–74 (1993).

    Article 

    Google Scholar 

  • 64.

    Gianasi, B. L., Verkaik, K., Hamel, J.-F. & Mercier, A. Novel use of PIT tags in sea cucumbers: promising results with the commercial species Cucumaria frondosa. PLoS ONE 10, e0127884 (2015).

  • 65.

    Wasserstein, R. L., Schirm, A. L. & Lazar, N. A. Moving to a world beyond “p< 0.05”. Am. Stat. 73, 1–19 (2019).

  • 66.

    Dushoff, J., Kain, M. P. & Bolker, B. M. I can see clearly now: reinterpreting statistical significance. Methods Ecol. Evol. 10, 756–759 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Seasonal change is a major driver of soil resistomes at a watershed scale

    The future of the IoT (batteries not required)