Klemetsen, A. et al. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): A review of aspects of their life histories. Ecol. Freshw. Fish. 12, 1–59. https://doi.org/10.1034/j.1600-0633.2003.00010.x (2003).
Google Scholar
Elliott, J. M. Quantitative Ecology and the Brown Trout (Oxford University Press, 1994).
ICES. Baltic Salmon and Trout Assessment Working Group (WGBAST). ICES Sci. Rep. 2(22), 261. https://doi.org/10.17895/ices.pub.5974 (2020).
Google Scholar
Berrebi, P., Horvath, Á., Splendiani, A., Palm, S. & Bernaś, R. Genetic diversity of domestic brown trout stocks in Europe. Aquaculture 544, 737043. https://doi.org/10.1016/j.aquaculture.2021.737043 (2021).
Google Scholar
Jonsson, B. & Jonsson, N. Partial migration: Niche shift versus sexual maturation in fishes. Rev. Fish Biol. Fish. 3, 348–365. https://doi.org/10.1007/BF00043384 (1993).
Google Scholar
Jonsson, B. Diadromous and resident Trout Salmo Trutta: Is their difference due to genetics?. Oikos 38, 297–300. https://doi.org/10.2307/3544668 (1982).
Google Scholar
Olsson, I. C., Greenberg, L. A., Bergman, E. & Wysujack, K. Environmentally induced migration: The importance of food. Ecol. Lett. 9, 45–51. https://doi.org/10.1111/j.1461-0248.2006.00909.x (2006).
Google Scholar
Wysujack, K., Greenberg, L. A., Bergman, E. & Olsson, I. C. The role of the environment in partial migration: Food availability affects the adoption of a migratory tactic in brown trout Salmo trutta. Ecol. Freshw. Fish. 18, 52–59. https://doi.org/10.1111/j.1600-0633.2008.00322.x (2009).
Google Scholar
Charles, K., Roussel, J. M. & Cunjak, R. A. Estimating the contribution of sympatric anadromous and freshwater resident brown trout to juvenile production. Mar. Freshw. Res. 55, 185–191. https://doi.org/10.1071/MF03173 (2004).
Google Scholar
Youngson, A. F., Mitchell, A. I., Noack, P. T. & Laird, L. M. Carotenoid pigment profiles distinguish anadromous and nonanadromous brown trout (Salmo trutta). Can. J. Fish. Aquat. Sci. 54, 1064–1066. https://doi.org/10.1139/f97-023 (1997).
Google Scholar
Eek, D. & Bohlin, T. Strontium in scales verifies that sympatric sea-run and stream-resident brown trout can be distinguished by coloration. J. Fish Biol. 51, 659–661. https://doi.org/10.1111/j.1095-8649.1997.tb01522.x (1997).
Google Scholar
Veinott, G., Northcote, T., Rosenau, M. & Evans, R. D. Concentrations of strontium in the pectoral fin rays of the white sturgeon (Acipenser transmontanus) by laser ablation sampling—inductively coupled plasma—mass spectrometry as an indicator of marine migrations. Can. J. Fish. Aquat. Sci. 56, 1981–1990. https://doi.org/10.1139/f99-120 (1999).
Google Scholar
Jardine, T. D., Cartwright, D. F., Dietrich, J. P. & Cunjak, R. A. Resource use by salmonids in riverine, lacustrine and marine environments: Evidence from stable isotope analysis. Environ. Biol. Fishes. 73, 309–319. https://doi.org/10.1007/s10641-005-2259-8 (2005).
Google Scholar
Jones, A. G. & Ardren, W. R. Methods of parentage analysis in natural populations. Mol. Ecol. 12, 2511–2523. https://doi.org/10.1046/j.1365-294X.2003.01928.x (2003).
Google Scholar
Goodwin, J. C. A., King, R. A., Jones, J. I., Ibbotson, A. & Stevens, J. R. A small number of anadromous females drive reproduction in a brown trout (Salmo trutta) population in an English chalk stream. Freshw. Biol. 61, 1075–1089. https://doi.org/10.1111/fwb.12768 (2016).
Google Scholar
Charles, K., Guyomard, R., Hoyheim, B., Ombredane, D. & Baglinière, J.-L. Lack of genetic differentiation between anadromous and resident sympatric brown trout (Salmo trutta) in a Normandy population. Aquat. Living Resour. 18, 65–69. https://doi.org/10.1051/alr:2005006 (2005).
Google Scholar
Charles, K., Roussel, J.-M., Lebel, J.-M., Bagliniere, J.-L. & Ombredane, D. Genetic differentiation between anadromous and freshwater resident brown trout (Salmo trutta L.): Insights obtained from stable isotope analysis. Ecol. Freshw. Fish. 15, 255–263. https://doi.org/10.1111/j.1600-0633.2006.00149.x (2006).
Google Scholar
Jarry, M. et al. Sea trout (Salmo trutta L.) growth patterns during early steps of invasion in the Kerguelen Islands. Polar Biol. 41, 925–934. https://doi.org/10.1007/s00300-018-2253-1 (2018).
Google Scholar
Brauer, C. J. & Beheregaray, L. B. Recent and rapid anthropogenic habitat fragmentation increases extinction risk for freshwater biodiversity. Evol. Appl. 13, 2857–2869. https://doi.org/10.1111/eva.13128 (2020).
Google Scholar
Griffiths, A. M., Koizumi, I., Bright, D. & Stevens, J. R. A case of isolation by distance and shortterm temporal stability of population structure in brown trout (Salmo trutta) within the River Dart, southwest England. Evol. Appl. 2, 537–554. https://doi.org/10.1111/j.1752-4571.2009.00092.x (2009).
Google Scholar
HELCOM. Sea Trout and Salmon Populations and Rivers in Poland—HELCOM Assessment of Salmon (Salmo salar) and Sea Trout (Salmo trutta) Populations and Habitats in Rivers Flowing to the Baltic Sea. Balt. Sea Environ. Proc. No. 126B. 2011.
Dębowski, P. Fish assemblages in the Parsęta River drainage basin. Pol. Arch. Hydrobiol. 46, 161–172 (1999).
Kuligowski, D. R., Ford, M. J. & Berejikian, B. A. Breeding structure of steelhead inferred from patterns of genetic relatedness among nests. Trans. Am. Fish. Soc. 134, 1202–2121. https://doi.org/10.1577/T04-187.1 (2005).
Google Scholar
Dauphin, G., Prévost, E., Adams, C. E. & Boylan, P. Using redd counts to estimate salmonids spawner abundances: A Bayesian modelling approach. Fish. Res. 106, 32–40. https://doi.org/10.1016/j.fishres.2010.06.014 (2010).
Google Scholar
Cairney, M., Taggart, J. B. & Hoyheim, B. Characterization of microsatellite and minisatellite loci in Atlantic salmon (Salmo salar L.) and cross-species amplification in other salmonids. Mol. Ecol. 9, 2175–2178. https://doi.org/10.1046/j.1365-294X.2000.105312.x (2000).
Google Scholar
Estoup, A., Presa, P., Krieg, F., Vaiman, D. & Guyomard, R. (CT)n and (GT)n microsatellites: A new class of genetic markers for Salmo trutta L. brown trout. Heredity 71, 488–496. https://doi.org/10.1038/hdy.1993.167 (1993).
Google Scholar
O’Reilly, P. T., Hamilton, L. C., McConnell, S. K. & Wright, J. M. Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Can. J. Fish. Aquat. Sci. 53, 2292–2298. https://doi.org/10.1139/f96-192 (1996).
Google Scholar
Poteaux, C., Bonhomme, F. & Berrebi, P. Microsatellite polymorphism and genetic impact of restocking in Mediterranean brown trout (Salmo trutta L.). Heredity 82, 645–653. https://doi.org/10.1046/j.1365-2540.1999.00519.x (1999).
Google Scholar
Presa, P. & Guyomard, R. Conservation of microsatellites in three species of salmonids. J. Fish Biol. 49, 1326–1329. https://doi.org/10.1111/j.1095-8649.1996.tb01800.x (1996).
Google Scholar
Scribner, K. T., Gust, J. R. & Fields, R. L. Isolation and characterization of novel salmon microsatellite loci: Cross species amplification and population genetics applications. Can. J. Fish. Aquat. Sci. 53, 833–841. https://doi.org/10.1139/cjfas-53-4-833 (1996).
Google Scholar
Slettan, A., Olsaker, I. & Lie, O. Atlantic salmon, Salmo salar, microsatellites at the SSOSL25, SSOSL85, SSOSL311, SSOSL417 loci. Anim. Genet. 26, 281–282. https://doi.org/10.1111/j.1365-2052.1995.tb03262.x (1995).
Google Scholar
Slettan, A., Olsaker, I. & Lie, O. Polymorphic Atlantic salmon, Salmo salar L., microsatellites at the SSOSL438, SSOSL429 and SSOSL444 loci. Anim. Genet. 27, 57–58 (1996).
Google Scholar
Linløkken, A. N., Haugen, T. O., Kent, M. P. & Lien, S. Genetic differences between wild and hatchery-bred brown trout (Salmo trutta L.) in single nucleotide polymorphisms linked to selective traits. Ecol. Evol. 7, 4963–4972. https://doi.org/10.1002/ece3.3070 (2017).
Google Scholar
Bernaś, R. et al. Genetic differentiation in hatchery and stocked populations of sea trout in the Southern Baltic: Selection evidence at SNP loci. Genes 11, 184. https://doi.org/10.3390/genes11020184 (2020).
Google Scholar
Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 35: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).
Google Scholar
Peakall, R. & Smouse, P. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).
Google Scholar
Kalinowski, S. T. hp-rare 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes 5, 187–189. https://doi.org/10.1111/j.1471-8286.2004.00845.x (2005).
Google Scholar
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
Google Scholar
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).
Google Scholar
Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191. https://doi.org/10.1111/1755-0998.12387 (2015).
Google Scholar
Rice, W. R. Analyzing tables of statistical tests. Evolution 43, 223–225. https://doi.org/10.1111/j.1558-5646.1989.tb04220.x (1989).
Google Scholar
Bernaś, R., Burzyński, A., Dębowski, P., Poćwierz-Kotus, A. & Wenne, R. Genetic diversity within sea trout population from an intensively stocked southern Baltic river, based on microsatellite DNA analysis. Fish. Manage. Ecol. 21, 398–409. https://doi.org/10.1111/fme.12090 (2014).
Google Scholar
Bernaś, R. & Wąs-Barcz, A. Genetic structure of important resident brown trout breeding lines in Poland. J. Appl. Genet. 61, 239–247. https://doi.org/10.1007/s13353-020-00548-6 (2020).
Google Scholar
Ostergren, J. & Nilsson, J. Importance of life-history and landscape characteristics for genetic structure and genetic diversity of brown trout (Salmo trutta L.). Ecol. Freshw. Fish. 21, 119–133 (2012).
Google Scholar
Lehtonen, P. K., Tonteri, A., Sendek, D., Titov, S. & Primmer, C. R. Spatio-temporal genetic structuring of brown trout (Salmo trutta L.) populations within the River Luga, northwest Russia. Conserv. Genet. 10, 281–289. https://doi.org/10.1007/s10592-008-9577-2 (2009).
Google Scholar
Cross, T. F., Mills, C. P. R. & de CourcyWilliams, M. An intensive study of allozyme variation in freshwater resident and anadromous trout, Salmo trutta L., in western Ireland. J. Fish Biol. 40, 25–32. https://doi.org/10.1111/j.1095-8649.1992.tb02550.x (1992).
Google Scholar
Stelkens, R., Jaffuel, G., Escher, M. & Wedekind, C. Genetic and phenotypic population divergence on a microgeographic scale in brown trout. Mol. Ecol. 21, 2896–2915. https://doi.org/10.1111/j.1365-294X.2012.05581.x (2012).
Google Scholar
Hansen, M. M., Limborg, M. T., Ferchaud, A.-L. & Pujolar, J.-M. The effects of Medieval dams on genetic divergence and demographic history in brown trout populations. BMC Evol. Biol. 14, 122. https://doi.org/10.1186/1471-2148-14-122 (2014).
Google Scholar
Kohlmann, K. & Wüstemann, O. Tracing the genetic origin of brown trout (Salmo trutta) re-colonizing the Ecker reservoir in the Harz National Park, Germany. Environ. Biotechnol. 8, 39–44 (2012).
Dellefors, C. & Faremo, U. Early sexual maturation in males of wild sea trout, Salmo trutta L. inhibits smoltification. J. Fish Biol. 33, 741–749. https://doi.org/10.1111/j.1095-8649.1988.tb05519.x (1988).
Google Scholar
Jonsson, B. & Jonsson, N. Differences in growth between offspring of anadromous and freshwater brown trout Salmo trutta. J. Fish Biol. 20, 1–7. https://doi.org/10.1111/jfb.14693 (2021).
Google Scholar
Source: Ecology - nature.com