in

Evolutionary dynamics of the elevational diversity gradient in passerine birds

  • 1.

    Lomolino, M. V. Elevation gradients of species-density: historical and prospective views. Glob. Ecol. Biogeogr. 10, 3–13 (2001).

    Article 

    Google Scholar 

  • 2.

    McCain, C. M. Global analysis of reptile elevational diversity. Glob. Ecol. Biogeogr. 19, 541–553 (2010).

    Google Scholar 

  • 3.

    Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246–250 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Orme, C. D. L. et al. Global hotspots of species richness are not congruent with endemism or threat. Nature 436, 1016–1019 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Rahbek, C. et al. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Wiens, J. J., Parra-Olea, G., García-París, M. & Wake, D. B. Phylogenetic history underlies elevational biodiversity patterns in tropical salamanders. Proc. R. Soc. B 274, 919–928 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Pigot, A. L., Trisos, C. H. & Tobias, J. A. Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds. Proc. R. Soc. B 283, 20152013 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 8.

    Körner, C. & Spehn, E. M. (eds) Mountain Biodiversity: A Global Assessment (CRC Press, 2002).

  • 9.

    Merckx, V. S. F. T. et al. Evolution of endemism on a young tropical mountain. Nature 524, 347–350 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Fjeldsa, J. Geographical patterns for relict and young species of birds in Africa and South America and implications for conservation priorities. Biodivers. Conserv. 3, 207–226 (1994).

    Article 

    Google Scholar 

  • 11.

    Jetz, W., Rahbek, C. & Colwell, R. K. The coincidence of rarity and richness and the potential signature of history in centres of endemism. Ecol. Lett. 7, 1180–1191 (2004).

    Article 

    Google Scholar 

  • 12.

    Weir, J. T. Divergent timing and patterns of species accumulation in lowland and highland Neotropical birds. Evolution 60, 842–855 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Hughes, C. & Eastwood, R. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc. Natl Acad. Sci. USA 103, 10334–10339 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Cozzarolo, C.-S. et al. Biogeography and ecological diversification of a mayfly clade in New Guinea.Front. Ecol. Evol. 7, 233 (2019).

    Article 

    Google Scholar 

  • 15.

    Davies, T. J., Savolainen, V., Chase, M. W., Moat, J. & Barracloug, T. G. Environmental energy and evolutionary rates in flowering plants. Proc. R. Soc. B 271, 2195–2200 (2004).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Graves, G. R. Linearity of geographic range and its possible effect on the population structure of andean birds. Auk 105, 47–52 (1988).

    Article 

    Google Scholar 

  • 17.

    Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).

    Article 

    Google Scholar 

  • 18.

    Cai, T. et al. What makes the Sino-Himalayan mountains the major diversity hotspots for pheasants? J. Biogeogr. 45, 640–651 (2018).

    Article 

    Google Scholar 

  • 19.

    Rana, S. K., Gross, K. & Price, T. D. Drivers of elevational richness peaks, evaluated for trees in the east Himalaya. Ecology 100, e02548 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Rahbek, C. et al. Building mountain biodiversity: geological and evolutionary processes. Science 365, 1114–1119 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Ribas, C. C., Moyle, R. G., Miyaki, C. Y. & Cracraft, J. The assembly of montane biotas: linking Andean tectonics and climatic oscillations to independent regimes of diversification in Pionus parrots. Proc. R. Soc. B 274, 2399–2408 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Schwery, O. et al. As old as the mountains: the radiations of the Ericaceae. N. Phytologist 207, 355–367 (2015).

    Article 

    Google Scholar 

  • 23.

    Bates, J. M. & Zink, R. M. Evolution into the Andes: molecular evidence for species relationships in the genus Leptopogon. Auk 111, 507–515 (1994).

    Google Scholar 

  • 24.

    Roy, M. S. Recent diversification in African greenbuls (Pycnonotidae: Andropadus) supports a montane speciation model. Proc. R. Soc. B 264, 1337–1344 (1997).

    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Garcia-Moreno, J. et al. Pre-Pleistocene differentiation among chat-tyrants. Condor 100, 629–640 (1998).

    Article 

    Google Scholar 

  • 26.

    Oliveros, C. H. et al. Earth history and the passerine superradiation. Proc. Natl Acad. Sci. USA 116, 7916–7925 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Title, P. O. & Rabosky, D. L. Tip rates, phylogenies and diversification: what are we estimating, and how good are the estimates? Methods Ecol. Evol. 10, 821–834 (2019).

    Article 

    Google Scholar 

  • 29.

    Herrera-Alsina, L., van Els, P. & Etienne, R. S. Detecting the dependence of diversification on multiple traits from phylogenetic trees and trait data. Syst. Biol. 68, 317–328 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Weir, J. T. & Schluter, D. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315, 1574–1576 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Derryberry, E. P. et al. Lineage diversification and morphological evolution in a large-scale continental radiation: the Neotropical ovenbirds and woodcreepers (Aves: Furnariidae). Evolution 65, 2973–2986 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Fjeldså, J., Bowie, R. C. K. & Rahbek, C. The role of mountain ranges in the diversification of birds. Annu. Rev. Ecol. Evol. Syst. 43, 249–265 (2012).

    Article 

    Google Scholar 

  • 33.

    Chazot, N. et al. Into the Andes: multiple independent colonizations drive montane diversity in the Neotropical clearwing butterflies Godyridina. Mol. Ecol. 25, 5765–5784 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Elias, M. et al. Out of the Andes: oatterns of diversification in clearwing butterflies. Mol. Ecol. 18, 1716–1729 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    McGuire, J. A., Witt, C. C., Altshuler, D. L. & Remsen, J. V. Phylogenetic systematics and biogeography of hummingbirds: Bayesian and maximum likelihood analyses of partitioned data and selection of an appropriate partitioning strategy. Syst. Biol. 56, 837–856 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Brumfield, R. T. & Edwards, S. V. Evolution into and out of the Andes: a Bayesian analysis of historical diversification in Thamnophilus antshrikes. Evolution 61, 346–367 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Zhou, C. et al. Genome-wide analysis sheds light on the high-altitude adaptation of the buff-throated partridge (Tetraophasis szechenyii). Mol. Genet. Genom. 295, 31–46 (2020).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Xu, Z., He, J. & Wang, J. Hypoxia affects the resistance of Scylla paramamosain to Vibrio alginolyticus via changes of energy metabolism. Aquac. Rep. 19, 100565 (2021).

    Article 

    Google Scholar 

  • 39.

    Storz, J. F., Scott, G. R. & Cheviron, Z. A. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. J. Exp. Biol. 213, 4125–4136 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Scott, G. R. Elevated performance: the unique physiology of birds that fly at high altitudes. J. Exp. Biol. 214, 2455–2462 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Projecto-Garcia, J. et al. Repeated elevational transitions in hemoglobin function during the evolution of Andean hummingbirds. Proc. Natl Acad. Sci. USA 110, 20669–20674 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Scott, G. R. et al. Molecular evolution of cytochrome C oxidase underlies high-altitude adaptation in the bar-headed goose. Mol. Biol. Evol. 28, 351–363 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Schumm, M., White, A. E., Supriya, K. & Price, T. D. Ecological limits as the driver of bird species richness patterns along the east Himalayan elevational gradient. Am. Nat. 195, 802–817 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Malpica, A., Covarrubias, S., Villegas-Patraca, R. & Herrera-Alsina, L. Ecomorphological structure of avian communities changes upon arrival of wintering species. Basic Appl. Ecol. 24, 60–67 (2017).

    Article 

    Google Scholar 

  • 45.

    Etienne, R. S. et al. A minimal model for the latitudinal diversity gradient suggests a dominant role for ecological limits. Am. Nat. 194, E122–E133 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. USA 115, 11982–11987 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 48.

    Braun, E. L., Cracraft, J. & Houde, P. in Avian Genomics in Ecology and Evolution (ed. Kraus, R. H. S.) 151–210 (Springer, 2019).

  • 49.

    del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & Kirwan, G. Handbook of the Birds of the World (Lynx Edicions, 2016).

  • 50.

    Chapman, F. M. et al. The distribution of bird life in Ecuador: a contribution to a study of the origin of Andean bird-life. Bull. Am. Mus. Nat. Hist. 55, 1–784 (1926).

    Google Scholar 

  • 51.

    Maddison, W. P., Midford, P. E. & Otto, S. P. Estimating a binary character’s effect on speciation and extinction. Syst. Biol. 56, 701–710 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Daru, B., Karunarathne, P. & Schliep, K. phyloregion: R package for biogeographic regionalization and spatial conservation. Methods Ecol. Evol. 11, 1483–1491 (2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Reducing emissions by decarbonizing industry

    Quality assessment of Urochloa (syn. Brachiaria) seeds produced in Cameroon