in

Evolutionary history and genetic connectivity across highly fragmented populations of an endangered daisy

  • Aægisdóttir HH, Kuss P, Stöcklin J (2009) Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation. Ann Bot 104:1313–1322

    Article  CAS  Google Scholar 

  • Ahrens CW, James EA, Botanic R, Melbourne G, Ave B, Yarra S (2015) Range-wide genetic analysis reveals limited structure and suggests asexual patterns in the rare forb Senecio macrocarpus. Biol J Linn Soc 115:256–269

    Article  Google Scholar 

  • Bouckaert R (2010) DensiTree: making sense of sets of phylogenetic trees. Bioinformatics 26:1372–137

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Bouckaert R, Vaughan TG, Barido-Sottani J, Duchene S, Fourmet M, Gavryushkina A et al. (2019) BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol 15:1–28

    Article  CAS  Google Scholar 

  • Bowler J (1982) Aridity in the late tertiary and quaternary of Australia. In: Barker W, Greenslade P (eds) Evolution of the flora and fauna of arid Australia. Peacock Publications, Adelaide, p 35–45

    Google Scholar 

  • Breed MF, Harrison PA, Blyth C, Byrne M, Gaget V, Gellie NJC et al. (2019) The potential of genomics for restoring ecosystems and biodiversity. Nat Rev Genet 20:615–628

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Brown AHD, Young AG (2000) Genetic diversity in tetraploid populations of the endangered daisy Rutidosis leptorrhynchoides and implications for its conservation. Heredity (Edinb) 85:122–129

    CAS  Article  Google Scholar 

  • Bryant D, Bouckaert R, Felsenstein J, Rosenberg NA, Roychoudhury A (2012) Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Mol Biol Evol 29:1917–1932

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Bull M, Stolfo G (2014) Flora of Melbourne. A guide to the indigenous plants of the greater Melbourne area, 4th edn. Hyland House, Melbourne

    Google Scholar 

  • Buza L, Young A, Thrall P (2000) Genetic erosion, inbreeding and reduced fitness in fragmented populations of the endangered tetraploid pea Swainsona recta. Biol Conserv 93:177–186

    Article  Google Scholar 

  • Charlesworth D (2006) Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet 2:379–384

    CAS  Article  Google Scholar 

  • Chen C, Lu RS, Zhu SS, Tamaki I, Qiu YX (2017) Population structure and historical demography of Dipteronia dyeriana (Sapindaceae), an extremely narrow palaeoendemic plant from China: implications for conservation in a biodiversity hot spot. Heredity (Edinb) 119:95–106

    CAS  Article  Google Scholar 

  • Clarke GM, O’Dwyer C (2000) Genetic variability and population structure of the endangered golden sun moth, Synemon plana. Biol Conserv 92:371–381

    Article  Google Scholar 

  • Cole CT (2003) Genetic variation in rare and common plants. Annu Rev Ecol Evol Syst 34:213–237

    Article  Google Scholar 

  • Coleman RA, Weeks AR, Hoffmann AA (2013) Balancing genetic uniqueness and genetic variation in determining conservation and translocation strategies: a comprehensive case study of threatened dwarf galaxias, Galaxiella pusilla (Mack) (Pisces: Galaxiidae). Mol Ecol 22:1820–1835

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Courtice B, Hoebee SE, Sinclair S, Morgan JW (2020) Local population density affects pollinator visitation in the endangered grassland daisy Rutidosis leptorhynchoides (Asteraceae). Aust J Bot 67:638–648

    Article  Google Scholar 

  • Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. TREE 15:290–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delph LF, Kelly JK (2014) On the importance of balancing selection in plants. N Phytol 201:45–56

    Article  Google Scholar 

  • DeMauro MM (1993) Relationship of breeding system to rarity in the Lakeside Daisy (Hymenoxys acaulis var. glabra). Conserv Biol 7:542–550

    Article  Google Scholar 

  • Department of the Environment (2020) Senecio macrocarpus in Species Profile and Threats Database, Department of the Environment, Canberra. Available from: http://www.environment.gov.au/sprat. Accessed 27 May 2020.

  • Diekmann OE, Gouveia L, Perez JA, Gil-Rodriguez C, Serrão EA (2010) The possible origin of Zostera noltii in the Canary Islands and guidelines for restoration. Mar Biol 157:2109–2115

    Article  Google Scholar 

  • Dorrough J, Ash JE (1999) Using past and present habitat to predict the current distribution and abundance of a rare cryptic lizard, Delma impar (Pygopodidae). Austral Ecol 24:614–624

    Article  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–241

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foll M, Gaggiotti OE (2006) Identifying the environmental factors that determine the genetic structure of populations. Genetics 174:875–891

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993

    PubMed  PubMed Central  Article  Google Scholar 

  • Frankham R (1996) Relationship between genetic variation and populations size in wildlife. Conserv Biol 10:1500–1508

    Article  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

  • Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24:2610–2618

    PubMed  Article  PubMed Central  Google Scholar 

  • Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR et al. (2011) Predicting the probability of outbreeding depression. Conserv Biol 25:465–475

    PubMed  Article  PubMed Central  Google Scholar 

  • Frankham R, Ballou JD, Ralls K, Eldridge MDB, Dudash MR, Fenster CB, et al. (2017) Genetic management of fragmented animal and plant populations, 1st edn. Oxford University Press, Oxford

  • Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv 170:56–63

    Article  Google Scholar 

  • Frankham R, Lees K, Montgomery ME, England PR, Lowe EH, Briscoe DA (1999) Do population size bottlenecks reduce evolutionary potential? Anim Conserv 2:255–260

    Article  Google Scholar 

  • Georges A, Gruber B, Pauly GB, White D, Adams M, Young MJ et al. (2018) Genomewide SNP markers breathe new life into phylogeography and species delimitation for the problematic short-necked turtles (Chelidae: Emydura) of eastern Australia. Mol Ecol 27:5195–5213

    PubMed  Article  PubMed Central  Google Scholar 

  • Glémin S, Gaude T, Guillemin ML, Lourmas M, Olivieri I, Mignot A (2005) Balancing selection in the wild: testing population genetics theory of self-incompatibility in the rare species Brassica insularis. Genetics 171:279–289

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Goudet J (2005) HIERFSTAT, a package for R to compute and test hierarchical F‐statistics. Mol Ecol Resour 5:184–186

    Article  Google Scholar 

  • Gruber B, Unmack PJ, Berry OF, Georges A (2018) DARTR: an R package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol Ecol Resour 18:691–699

    PubMed  Article  PubMed Central  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information dependent genotyping. Nucl Acids Res 29:e25

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Janes JK, Malenfant M, Andrew RL, Miller JM, Dupuis JR, Gorrell JC et al. (2017) The K = 2 conundrum. Mol Ecol 26:3594–3602

    PubMed  Article  PubMed Central  Google Scholar 

  • Jones RN (1997) The biogeography of the grasses and lowland grasslands of south-eastern Australia. Adv Nat Conserv 2:11–18

    Google Scholar 

  • Kamvar ZN, Brooks JC, Grünwald NJ (2015) Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front Genet 6:1–10

    CAS  Article  Google Scholar 

  • Knapp EE, Rice KJ (1996) Genetic structure and gene flow in Elymus glaucus (blue wildrye): implications for native grassland restoration. Restor Ecol 4:1–10

    Article  Google Scholar 

  • Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Ro AY (2015) CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kronenberger JA, Funk WC, Smith JW, Fitzpatrick SW, Angeloni LM, Broder ED et al. (2017) Testing the demographic effects of divergent immigrants on small populations of Trinidadian guppies. Anim Conserv 20:3–11

    Article  Google Scholar 

  • Lande R, Shannon S (1996) The role of genetic variation in adaptation and population persistence in a changing environment. Evolution (NY) 50:434–437

    Article  Google Scholar 

  • Liddell E, Cook CN, Sunnucks P (2020) Evaluating the use of risk assessment frameworks in the identification of population units for biodiversity conservation. Wildl Res 47:208–216

    Article  Google Scholar 

  • Lippé C, Dumont P, Bernatchez L (2006) High genetic diversity and no inbreeding in the endangered copper redhorse, Moxostoma hubbsi (Catostomidae, Pisces): the positive sides of a long generation time. Mol Ecol 15:1769–1780

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • Lloyd MW, Burnett RK, Engelhardt KAM, Neel MC (2011) The structure of population genetic diversity in Vallisneria Americana in the Chesapeake Bay: implications for restoration. Conserv Genet 12:1269–1285

    Article  Google Scholar 

  • Mable BK, Robertson AV, Dart S, Di Berardo C, Witham L (2005) Breakdown of self-incompatibility in the perennial Arabidopsis lyrata (Brassicaceae) and its genetic consequences. Evolution (NY) 59:1437–1448

    Article  Google Scholar 

  • Markgraf V, McGlone M, Hope G (1995) Neogene paleoenvironmental and paleoclimatic change in southern temperate ecosystems—a southern perspective. Trends Ecol Evol 10:143–147

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Melville J, Goebel S, Starr C, Keogh JS, Austin JJ (2007) Conservation genetics and species status of an endangered Australian dragon, Tympanocryptis pinguicolla (Reptilia: Agamidae). Conserv Genet 8:185–195

    Article  Google Scholar 

  • Mijangos JL, Pacioni C, Spencer PBS, Craig MD (2015) Contribution of genetics to ecological restoration. Mol Ecol 22:22–37

    Article  Google Scholar 

  • Morgan JW (1995) Ecological studies of the endangered Rutidosis leptorrhynchoides: I. Seed production, soil seed bank dynamics, population density and their effects on recruitment. Aust J Bot 43:1–11

    Article  Google Scholar 

  • Moritz C (1999) Conservation units and translocations: Strategies for conserving evolutionary processes. Hereditas 130:217–228

    Article  Google Scholar 

  • Murray BG, Young AG (2001) Widespread chromosome variation in the endangered grassland forb Rutidosis leptorrhynchoides F. Muell. (Asteraceae: Gnaphalieae). Ann Bot 87:83–90

    Article  Google Scholar 

  • NSW Office of Environment and Heritage (2012) National Recovery Plan for Button Wrinklewort Rutidosis leptorrhynchoides. NSW Office of Environment and Heritage, Hurstville

  • Nybom H, Bartish I (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol Evol Syst 3:93–114

    Article  Google Scholar 

  • Pacioni C, Hunt H, Allentoft ME, Vaughan TG, Wayne AF, Baynes A et al. (2015) Genetic diversity loss in a biodiversity hotspot: ancient DNA quantifies genetic decline and former connectivity in a critically endangered marsupial. Mol Ecol 24:5813–5828

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Pavlova A, Selwood P, Harrisson KA, Murray N, Quin B, Menkhorst P et al. (2014) Integrating phylogeography and morphometrics to assess conservation merits and inform conservation strategies for an endangered subspecies of a common bird species. Biol Conserv 174:136–146

    Article  Google Scholar 

  • Pickrell JK, Pritchard JK (2012) Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet 8:1–17

    Article  CAS  Google Scholar 

  • Pickup M, Field DL, Rowell DM, Young AG (2012) Predicting local adaptation in fragmented plant populations: Implications for restoration genetics. Evol Appl 5:913–924

    PubMed  PubMed Central  Article  Google Scholar 

  • Pickup M, Field DL, Rowell DM, Young AG (2013) Source population characteristics affect heterosis following genetic rescue of fragmented plant populations. Proc R Soc B Biol Sci 280:20122058

    CAS  Article  Google Scholar 

  • Pickup M, Young AG (2008) Population size, self-incompatibility and genetic rescue in diploid and tetraploid races of Rutidosis leptorrhynchoides (Asteraceae). Heredity (Edinb) 100:268–274

    CAS  Article  Google Scholar 

  • Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN et al. (2015) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:1246752

    Article  CAS  Google Scholar 

  • Potter S, Neaves LE, Lethbridge M, Eldridge MDB (2020) Understanding historical demographic processes to inform contemporary conservation of an arid zone specialist: the yellow-footed rock-wallaby. Genes (Basel) 11:1–24

    Article  CAS  Google Scholar 

  • Powell JM (1969) The squatting occupation of Victoria 1834-60. Aust Geogr Stud 7:9–27

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

  • Pritchard JK, Wen W (2003) Documentation for STRUCTURE Software: Version 2.

  • Raj A, Stephens M, Pritchard JK (2014) fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197:573–589

    PubMed  PubMed Central  Article  Google Scholar 

  • Ralls K, Ballou JD, Dudash MR, Eldridge MDB, Fenster CB, Lacy RC et al. (2018) Call for a paradigm shift in the genetic management of fragmented populations. Conserv Lett 11:1–6

    Article  Google Scholar 

  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard M (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Rodger YS, Greenbaum G, Silver M, Bar-david S, Winters G (2018) Detecting hierarchical levels of connectivity in a population of Acacia tortilis at the northern edge of the species’ global distribution: combining classical population genetics and network analyses. PLoS ONE 13:1–16

    Article  CAS  Google Scholar 

  • Rojas D, Lima AP, Momigliano P, Ivo P, Dudaniec RY, Sauer TC et al. (2020) The evolution of polymorphism in the warning coloration of the Amazonian poison frog Adelphobates galactonotus. Heredity 124:439–456

  • Scarlett NH, Parsons RF (1990) Conservation biology of the southern Australian daisy Rutidosis leptorrhynchoides. In: Clark TW, Seebeck JH (eds) Management and conservation of small populations. Chicago Zoological Society, Chicago, p 195–205

    Google Scholar 

  • Sinclair SJ (2010) National recovery plan for the large-fruit groundsel Senecio macrocarpus. Department of Sustainability and Environment, Melbourne

  • Sjogren P, Wyoni PI (1994) Conservation genetics and detection of rare alleles in finite populations. Conserv Biol 8:267–270

    Article  Google Scholar 

  • Spalink D, Mackay R, Sytsma KJ (2019) Phylogeography, population genetics and distribution modelling reveal vulnerability of Scirpus longii (Cyperaceae) and the Atlantic Coastal Plain Flora to climate change. Mol Ecol 28:2046–2061

  • Team RC (2018) R: a language and environment for statistical computing

  • Wagenius S, Lonsdorf E, Neuhauser C (2007) Patch aging and the S-Allee effect: breeding system effects on the demographic response of plants to habitat fragmentation. Am Nat 169:383–397

    PubMed  Article  PubMed Central  Google Scholar 

  • Weaver JC (1996) Beyond the fatal shore: pastoral squatting and the occupation of Australia. Am Hist Rev 101:981–1007

    Article  Google Scholar 

  • Weeks AR, Sgro CM, Young AG, Frankham R, Mitchell NJ, Miller KA et al. (2011) Assessing the benefits and risks of translocations in changing environments: A genetic perspective. Evol Appl 4:709–725

    PubMed  PubMed Central  Article  Google Scholar 

  • Weeks AR, Stoklosa J, Hoffmann AA (2016) Conservation of genetic uniqueness of populations may increase extinction likelihood of endangered species: the case of Australian mammals. Front Zool 13:1–9

    Article  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution (NY) 38:1358–1370

    CAS  Google Scholar 

  • Wells GP, Young AG (2002) Effects of seed dispersal on spatial genetic structure in populations of Rutidosis leptorrhychoides with different levels of correlated paternity. Genet Res 79:219–226

  • Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015) Genetic rescue to the rescue. Trends Ecol Evol 30:42–49

    PubMed  Article  PubMed Central  Google Scholar 

  • Young AG, Brown AHD, Murray BG, Thrall PH, Miller CH (2000) Genetic erosion, restricted mating and reduced viability in fragmented populations of the endangered grassland herb Rutidosis leptorrhynchoides. In: Young AG, Clarke G (eds) Genetics, demography and viability of fragmented populations, Cambridge University Press, London, p 335–359

  • Young AG, Brown AHD, Zich FC (1999) Genetic structure of fragmented populations of the endangered Daisy Rutidosis leptorrhynchoides. Cons Biol 13:256–265

  • Young AG, Miller C, Gregory E, Langston A (2000) Sporophytic self-incompatibility in diploid and tetraploid races of Rutidosis leptorrhynchoides (Asteraceae). Aust J Bot 48:667–672

  • Young AG, Murray BG (2000) Genetic bottlenecks and dysgenic gene flow into re-established populations of the grassland daisy, Rutidosis leptorrhynchoides. Aust J Bot 48:409–416

  • Young AG, Pickup M (2010) Low S-allele numbers limit mate availability, reduce seed set and skew fitness in small populations of a self-incompatible plant. J Appl Ecol 47:541–548

    Article  Google Scholar 


  • Source: Ecology - nature.com

    The catalyzing potential of J-WAFS seed grants

    Viromes outperform total metagenomes in revealing the spatiotemporal patterns of agricultural soil viral communities