in

Evolutionary loss of thermal acclimation accompanied by periodic monocarpic mass flowering in Strobilanthes flexicaulis

  • 1.

    Gunderson, C. A., O’Hara, K. H., Campion, C. M., Waler, A. V. & Edwards, N. T. Thermal plasticity of photosynthesis: The role of acclimation in forest responses to a warming climate. Glob. Change Biol. 16, 2272–2286 (2010).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Sage, R. F., Way, D. A. & Kubien, D. S. Rubisco, Rubisco activase, and global climate change. J. Exp. Bot. 59, 1581–1595 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Sendall, K. M. et al. Acclimation of photosynthetic temperature optima of temperate and boreal tree species in response to experimental forest warming. Glob. Change Biol. 21, 1342–1357 (2015).

    ADS 
    Article 

    Google Scholar 

  • 4.

    IPCC AR5. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report to the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).

    Google Scholar 

  • 5.

    Atkin, O. K. et al. 2008 Using temperature-dependent changes in leaf scaling relationships to quantitatively account for thermal acclimation of respiration in a coupled global climate–vegetation model. Glob. Change Biol. 14, 2709–2726 (2008).

    ADS 
    Article 

    Google Scholar 

  • 6.

    Reich, P. B. et al. Boreal and temperate trees show strong acclimation of respiration to warming. Nature 531, 633–636 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Hikosaka, H., Ishikawa, K., Borjigidai, A., Muller, O. & Onoda, Y. Temperature acclimation of photosynthesis: Mechanisms involved in the changes in temperature dependence of photosynthetic rate. J. Exp. Bot. 57, 291–302 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Ow, L. F., Griffin, K. L., Whitehead, D., Walcroft, A. S. & Turnbull, M. H. Thermal acclimation of leaf respiration but not photosynthesis in Populus deltoides × nigra. New Phytol. 178, 123–134 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 9.

    Way, D. A. & Yamori, W. Thermal acclimation of photosynthesis: On the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosynth. Res. 119, 89–100 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Heskel, M. A. et al. Convergence in the temperature response of leaf respiration across biomes and plant functional types. Proc. Natl. Acad. Sci. USA 113, 3832–3837 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Sage, R. F. & Kubien, D. S. The temperature response of C3 and C4 photosynthesis. Plant Cell Environ. 30, 1086–1106 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Scafaro, A. P. et al. Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: the importance of altered Rubisco content. Glob. Change Biol. 23, 2783–2800 (2017).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Higgins, S. I. & Richardson, D. M. Predicting plant migration rates in a changing world: the role of long-distance dispersal. Am. Nat. 153, 464–475 (1999).

    PubMed 
    Article 

    Google Scholar 

  • 14.

    Atkin, O. K. & Tjoelker, M. G. Thermal acclimation and the dynamic response of plant respiration to temperature. Trend. Plant Sci. 8, 343–351 (2003).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Yamori, W., Hikosaka, K. & Way, D. A. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth. Res. 119, 101–117 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Atkin, O. K. et al. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol. 206, 614–636 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Slot, M. & Kitajima, K. General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types. Oecologia 177, 885–900 (2015).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Atkinson, L. J., Hellicar, M. A., Fitter, A. H. & Atkin, O. K. Impact of temperature on the relationship between respiration and nitrogen concentration in roots: An analysis of scaling relationships, Q10 values and thermal acclimation ratios. New Phytol. 173, 110–120 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    Wei, X. et al. Consistent leaf respiratory response to experimental warming of three North American deciduous trees: A comparison across seasons, years, habitats and sites. Tree Physiol. 37, 285–300 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Kruse, J., Hopmans, P. & Adams, M. A. Temperature responses are a window to the physiology of dark respiration: Differences between CO2 release and O2 reduction shed light on energy conservation. Plant Cell Environ. 31, 901–914 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Kruse, J., Rennenberg, H. & Adams, M. A. Steps towards a mechanistic understanding of respiratory temperature responses. New Phytol. 189, 659–677 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Kakishima, S., Yoshimura, J., Murata, H. & Murata, J. 6-year periodicity and variable synchronicity in a mass-flowering plant. PLoS ONE 6, e28140. https://doi.org/10.1371/journal.pone.002814 (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Kakishima, S. et al. Evolutionary origin of a periodical mass-flowering plant. Ecol. Evol. 9, 4373–4381 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Björkman, O. & Denning, B. Photon field of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. Planta 170, 489–504 (1987).

    PubMed 
    Article 

    Google Scholar 

  • 25.

    Stirling, C. M., Aguilera, C., Baker, N. R. & Long, S. P. Changes in the photosynthetic light response curve during leaf development of field-grown maize with implications for modeling canopy photosynthesis. Photosynth. Res. 42, 217–225 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Ishida, A., Uemura, A., Koike, N., Matsumoto, Y. & Ang, L. H. Interactive effects of leaf age and self-shading on leaf structure, photosynthetic capacity and chlorophyll fluorescence in the rain forest tree, Dryobalanops aromatic. Tree Physiol. 19, 741–747 (1999).

    PubMed 
    Article 

    Google Scholar 

  • 27.

    Bouma, T. J. et al. Respiratory energy requirements and rate of protein turnover in vivo determined by the use of an inhibitor of protein synthesis and a probe to assess its effect. Physiol. Plant. 92, 585–594 (1994).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Noguchi, K. et al. Costs of protein turnover and carbohydrate export in leaves of sun and shade species. Aust. J. Plant Physiol. 28, 37–47 (2001).

    CAS 

    Google Scholar 

  • 29.

    Stephanie, S. Y. et al. Respiratory alternative oxidase responds to both low- and high-temperature stress in Quercus rubra leaves along an urban-rural gradient in New York. Funct. Ecol. 25, 1007–1017 (2011).

    Article 

    Google Scholar 

  • 30.

    Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: Global convergence in plant functioning. Proc. Natl. Acad. Sci. USA 94, 13730–13734 (1997).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Ishida, A. et al. Coordination between leaf and stem traits related to leaf carbon gain and hydraulics across 32 drought-tolerant angiosperms. Oecologica 156, 193–202 (2008).

    ADS 
    Article 

    Google Scholar 

  • 33.

    He, P. et al. Leaf mechanical strength and photosynthetic capacity wary independently across 57 subtropical forest species with contrasting light requirements. New Phytol. 223, 607–618 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Yamashita, N., Koike, N. & Ishida, A. Leaf ontogenetic dependence of light acclimation in invasive and native subtropical trees of different successional status. Plant Cell Environ. 25, 1341–1356 (2002).

    Article 

    Google Scholar 

  • 35.

    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?. New Phytol. 178, 719–739 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Sala, A., Piper, F. & Hoch, G. Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytol. 186, 274–281 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    O’Brien, M. J., Leuzinger, S., Philipson, C. D., Tay, J. & Hector, A. Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nat. Clim. Change 4, 710–714 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 38.

    Saiki, S.-T., Ishida, A., Yoshimura, K. & Yazaki, K. Physiological mechanisms of drought-induced tree die-off in relation to carbon, hydraulic and respiratory stress in a drought-tolerant woody plant. Sci. Rep. 7, 2995. https://doi.org/10.1038/s41598-017-03162-5 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Kono, Y. et al. Initial hydraulic failure followed by late-stage carbon starvation leads to drought-induced death in the tree Trema orientalis. Commun. Biol. 2, 8. https://doi.org/10.1038/s42003-018-0256-7 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Ebbert, V., Adams, W. W. III., Mattoo, A. K., Sokolenko, A. & Demming-Adams, B. Up-regulation of a photosystem II core protein phosphatase inhibitor and sustained D1 phosphorylation in zeaxanthin-retaining, photoinhibited needles of overwintering Douglas fir. Plant Cell Environ. 28, 232–240 (2005).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Harayama, H., Ikeda, T., Ishida, A. & Yamamoto, S. I. Seasonal variations in water relations in current-year leaves of evergreen trees with delayed greening. Tree Physiol. 26, 1025–1033 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 42.

    Yasumura, Y. & Ishida, A. Temporal variation in leaf nitrogen partitioning of a broad-leaved evergreen tree, Quercus myrsinaefolia. J. Plant Res. 124, 115–123 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Fowler, S. & Thomashow, M. F. Arabidopsis trancriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition in to the CBF cold response pathway. Plant Cell 14, 1675–1690 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Oono, Y. et al. Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. Funct. Integr. Genom. 6, 212–234 (2006).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Nakaminami, K. et al. Analysis of differential expression patterns of mRNA and protein during acclimation and de-acclimation in Arabidopsis. Mol. Cell. Proteom. 13, 3602–3611 (2014).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Wang, H. et al. Acclimation of leaf respiration consistent with optimal photosynthetic capacity. Glob. Chang Biol. 26, 2573–2583 (2020).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Maseyk, K., Grünzweig, J. M., Rotenberg, E. & Yakir, D. Respiration acclimation contributes to high carbon-use efficiency in a seasonally dry pine forest. Glob. Change Biol. 14, 1553–1567 (2008).

    ADS 
    Article 

    Google Scholar 

  • 48.

    Jarvi, M. P. & Burton, A. J. Acclimation and soil moisture constrain sugar maple root respiration in experimentally warmed soil. Tree Physiol. 33, 949–959 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 49.

    Smith, N. G., Li, G. & Dukes, J. S. Short-term thermal acclimation of dark respiration is greater non-photosynthetic than in photosynthetic tissues. AoBP Plants 11, 1–9 (2019).

    CAS 

    Google Scholar 

  • 50.

    Bennett, J. R. & Scotland, R. E. A revision of Strobilanthes (Acanthaceae) in Java. Kew. Bull. 58, 1–82 (2003).

    Article 

    Google Scholar 

  • 51.

    Wood, J. R. I. & Scotland, R. W. New and little-known species of Strobitlanthes (Acanthaceae) from India and South East Asia. Kew. Bull. 64, 3–47 (2009).

    Article 

    Google Scholar 

  • 52.

    Vongkamjan, S. & Sampson, F. B. Phenology, seed germination and some vegetative features of Strobilanthes fragrans (Acanthaceae), a recently described unusual species, found only in a single Forest Park in Thailand. Thai Forest Bull. Bot. 44, 6–10 (2016).

    Article 

    Google Scholar 

  • 53.

    Tsukaya, H., Kakishima, S., Hidayat, A., Murata, J. & Okada, H. Flowering phenology of the nine-year plant, Strobilanthes cernua (Acanthaceae). Tropics 20, 79–85 (2011).

    Article 

    Google Scholar 

  • 54.

    Sharma, M. V., Kuriakose, G. & Shivanna, K. R. Reproductive strategies of Strobilanthes kunthianus, an endemic, semelparous species in southern Western Ghats, India. Bot. J. Linn. Soc. 157, 155–163 (2008).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Asegun Henry has a big idea for tackling climate change: Store up the sun

    New directions in real estate practice