Heger, T. & Jeschke, J. M. The enemy release hypothesis as a hierarchy of hypotheses. Oikos 123, 741–750 (2014).
Google Scholar
Elton, C. S. The Ecology of Invasions by Animals and Plants (Springer, 1958).
Keane, R. M. & Crawley, M. J. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17, 164–170 (2002).
Google Scholar
Mitchell, C. E. & Power, A. G. Release of invasive plants from fungal and viral pathogens. Nature 421, 625–627 (2003).
Google Scholar
Colautti, R. I., Ricciardi, A., Grigorovich, I. A. & MacIsaac, H. J. Is invasion success explained by the enemy release hypothesis? Ecol. Lett. 7, 721–733 (2004).
Google Scholar
Liu, H. & Stiling, P. Testing the enemy release hypothesis: a review and meta-analysis. Biol. Invasions 8, 1535–1545 (2006).
Google Scholar
Meijer, K., Schilthuizen, M., Beukeboom, L. & Smit, C. A review and meta-analysis of the enemy release hypothesis in plant-herbivorous insect systems. PeerJ 4, e2560v1 (2016).
Google Scholar
Jeschke, J. M. & Heger, T. (eds) Invasion Biology: Hypotheses and Evidence (CABI, 2018).
Levine, J. M., Adler, P. B. & Yelenik, S. G. A meta-analysis of biotic resistance to exotic plant invasions. Ecol. Lett. 7, 975–989 (2004).
Google Scholar
Maron, J. L. & Vilà, M. When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95, 361–373 (2001).
Google Scholar
Callaway, R. M. & Ridenour, W. M. Novel weapons: invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2, 436–443 (2004).
Google Scholar
Cappuccino, N. & Arnason, J. T. Novel chemistry of invasive exotic plants. Biol. Lett. 2, 189–193 (2006).
Google Scholar
Bezemer, T. M., Harvey, J. A. & Cronin, J. T. Response of native insect communities to invasive plants. Ann. Rev. Entomol. 59, 119–141 (2014).
Google Scholar
Keeler, M. S. & Chew, F. S. Escaping an evolutionary trap: preference and performance of a native insect on an exotic invasive host. Oecologia 156, 559–568 (2008).
Google Scholar
Eckberg, J. O., Tenhumberg, B. & Louda, S. M. Insect herbivory and propagule pressure influence Cirsium vulgare invasiveness across the landscape. Ecology 93, 1787–1794 (2012).
Google Scholar
Bürki, C. & Nentwig, W. Comparison of herbivore insect communities of Heracleum sphondylium and H. mantegazzianum in Switzerland (Spermatophyta: Apiaceae). Entomol. Gen. 22, 147–155 (1997).
Google Scholar
Cincotta, C. L., Adams, J. M. & Holzapfel, C. Testing the enemy release hypothesis: a comparison of foliar insect herbivory of the exotic Norway maple (Acer platanoides L.) and the native sugar maple (A. saccharum L.). Biol. Invasions 11, 379–388 (2008).
Google Scholar
Cronin, J. T., Bhattarai, G. P., Allen, W. J. & Meyerson, L. A. Biogeography of a plant invasion: plant-herbivore interactions. Ecology 96, 1115–1127 (2015).
Google Scholar
Hu, X.-T. & Dong, B.-C. Herbivory and nitrogen availability affect performance of an invader Alternanthera philoxeroides and its native congener A. sessilis. Flora 257, 151412 (2019).
Google Scholar
Agrawal, A. A. & Kotanen, P. M. Herbivores and the success of exotic plants: a phylogenetically controlled experiment. Ecol. Lett. 6, 712–715 (2003).
Google Scholar
Agrawal, A. A. et al. Enemy release? An experiment with congeneric plant pairs and diverse above- and belowground enemies. Ecology 86, 2979–2989 (2005).
Google Scholar
Parker, J. D. & Hay, M. E. Biotic resistance to plant invasions? Native herbivores prefer non-native plants. Ecol. Lett. 8, 959–967 (2005).
Google Scholar
Parker, J. D., Burkepile, D. E. & Hay, M. E. Opposing effects of native and exotic herbivores on plant invasions. Science 311, 1459–1461 (2006).
Google Scholar
Parker, I. M. & Gilbert, G. S. When there is no escape: the effects of natural enemies on native, invasive, and non-native plants. Ecology 88, 1210–1224 (2007).
Google Scholar
Dostál, P. et al. Enemy damage of exotic plant species is similar to that of natives and increases with productivity. J. Ecol. 101, 388–399 (2013).
Google Scholar
Meijer, K. et al. Phytophagous insects on native and non-native host plants: combining the community approach and the biogeographical approach. PLoS ONE 10, e0125607 (2015).
Google Scholar
Schultheis, E. H., Berardi, A. E. & Lau, J. A. No release for the wicked: enemy release is dynamic and not associated with invasiveness. Ecology 96, 2446–2457 (2015).
Google Scholar
Beckstead, J. & Parker, I. M. Invasiveness of Ammophila arenaria: release from soil-borne pathogens? Ecology 84, 2824–2831 (2003).
Google Scholar
van Kleunen, M., Weber, E. & Fischer, M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 13, 235–245 (2010).
Google Scholar
Ashton, I. W. & Lerdau, M. T. Tolerance to herbivory, and not resistance, may explain differential success of invasive, naturalized, and native North American temperate vines. Divers. Distrib. 14, 169–178 (2008).
Google Scholar
Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).
Google Scholar
Eppinga, M. B., Rietkerk, M., Dekker, S. C., De Ruiter, P. C. & van der Putten, W. H. Accumulation of local pathogens: a new hypothesis to explain exotic plant invasions. Oikos 114, 168–176 (2006).
Google Scholar
Bufford, J. L. et al. Taxonomic similarity, more than contact opportunity, explains novel plant–pathogen associations between native and alien taxa. N. Phytol. 212, 657–667 (2016).
Google Scholar
White, E. M., Wilson, J. C. & Clarke, A. R. Biotic indirect effects: a neglected concept in invasion biology. Divers. Distrib. 12, 443–455 (2006).
Google Scholar
Allen, W. J. in Plant Invasions: The Role of Species Interactions (CABI Publishing, 2020).
Holt, R. D. Predation, apparent competition, and the structure of prey communities. Theor. Popul. Biol. 12, 197–229 (1977).
Google Scholar
Holt, R. D. & Bonsall, M. B. Apparent competition. Annu. Rev. Ecol. Evol. Syst. 48, 447–471 (2017).
Google Scholar
Sessions, L. & Kelly, D. Predator-mediated apparent competition between an introduced grass, Agrostis capillaris, and a native fern, Botrychium australe (Ophioglossaceae), in New Zealand. Oikos 96, 102–109 (2002).
Google Scholar
Dangremond, E. M., Pardini, E. A. & Knight, T. M. Apparent competition with an invasive plant hastens the extinction of an endangered lupine. Ecology 91, 2261–2271 (2010).
Google Scholar
Bhattarai, G. P., Meyerson, L. A. & Cronin, J. T. Geographic variation in apparent competition between native and invasive Phragmites australis. Ecology 98, 349–358 (2017).
Google Scholar
Simberloff, D. & Von Holle, B. Positive interactions of nonindigenous species: invasional meltdown? Biol. Invasions 1, 21–32 (1999).
Google Scholar
Allen, W. J. et al. Community-level direct and indirect impacts of an invasive plant favour exotic over native species. J. Ecol. 108, 2499–2510 (2020).
Google Scholar
Morris, R. J., Lewis, O. T. & Godfray, C. J. Experimental evidence for apparent competition in a tropical forest food web. Nature 428, 310–313 (2004).
Google Scholar
Tack, A. J. M., Gripenberg, S. & Roslin, T. Can we predict indirect interactions from quantitative food webs? – an experimental approach. J. Anim. Ecol. 80, 108–118 (2011).
Google Scholar
Frost, C. M. et al. Apparent competition drives community-wide parasitism rates and changes in host abundance across ecosystem boundaries. Nat. Commun. 7, 12644 (2016).
Google Scholar
Bardgett, R. D. & Wardle, D. A. Aboveground–Belowground Linkages: Biotic Interactions, Ecosystem Processes and Global Change (Oxford University Press, 2010).
Heinen, R., Biere, A., Harvey, J. A. & Bezemer, T. M. Effects of soil organisms on aboveground plant-insect interactions in the field: patterns, mechanisms and the role of methodology. Front. Ecol. Evol. 6, 106 (2018).
Google Scholar
Bever, J. D., Westover, K. M. & Antonovics, J. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J. Ecol. 85, 561–573 (1997).
Google Scholar
Kulmatiski, A., Beard, K. H., Stevens, J. R. & Cobbold, S. M. Plant–soil feedbacks: a meta‐analytical review. Ecol. Lett. 11, 980–992 (2008).
Google Scholar
Levine, J. M., Pachepsky, E., Kendall, B. E., Yelenik, S. G. & Lambers, J. H. Plant-soil feedbacks and invasive spread. Ecol. Lett. 9, 1005–1014 (2006).
Google Scholar
Suding, K. N., Harpole, W. S., Fukami, T., Kulmatiski, A., MacDougall, A. S., Stein, C. & van der Putten, W. H. Consequences of plant–soil feedbacks in invasion. J. Ecol. 101, 298–308 (2013).
Google Scholar
Crawford, K. M. et al. When and where plant-soil feedback may promote plant coexistence: a meta-analysis. Ecol. Lett. 22, 1274–1284 (2019).
Google Scholar
Cornelissen, T., Fernandes, G. W. & Vasconcellos-Neto, J. Size does matter: variation in herbivory between and within plants and the plant vigor hypothesis. Oikos 117, 1121–1130 (2008).
Google Scholar
Price, P. W. The plant vigor hypothesis and herbivore attack. Oikos 62, 244–251 (1991).
Google Scholar
Waller, L. P. et al. Biotic interactions drive ecosystem responses to plant invaders. Science 368, 967–972 (2020).
Google Scholar
Kozlov, M. V., Lanta, V., Zverev, V. & Zvereva, E. L. Global patterns in background losses of woody plant foliage to insects. Glob. Ecol. Biogeogr. 24, 1126–1135 (2015).
Google Scholar
Zas, R., Moreira, X. & Sampedro, L. Tolerance and induced resistance in a native and an exotic pine species: relevant traits for invasion ecology. J. Ecol. 99, 1316–1326 (2011).
Google Scholar
Croy, J. R., Meyerson, L. A., Allen, W. J., Bhattarai, G. P. & Cronin, J. T. Lineage and latitudinal variation in Phragmites australis tolerance to herbivory: implications for invasion success. Oikos 129, 1341–1357 (2020).
Google Scholar
Liu, G., Huang, Q.-Q., Lin, Z.-G., Huang, F.-F., Liao, H.-X. & Peng, S.-L. High tolerance to salinity and herbivory stresses may explain the expansion of Ipomoea cairica to salt marshes. PLoS ONE 7, e48829 (2012).
Google Scholar
Paynter, Q. et al. Why did specificity testing fail to predict the field host-range of the gorse pod moth in New Zealand. Biol. Control 46, 453–462 (2008).
Google Scholar
Groenteman, R., Fowler, S. V. & Sullivan, J. J. St. John’s wort beetles would not have been introduced to New Zealand now: a retrospective host range test of New Zealand’s most successful weed biocontrol agents. Biol. Control 57, 50–58 (2011).
Google Scholar
Blossey, B. & Nötzold, R. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J. Ecol. 83, 887–889 (1995).
Google Scholar
Felker-Quinn, E., Schweitzer, J. A. & Bailey, J. K. Meta-analysis reveals evolution in invasive plant species but little support for evolution of increased competitive ability (EICA). Ecol. Evol. 3, 739–751 (2013).
Google Scholar
Rotter, M. C. & Holeski, L. M. A meta-analysis of the evolution of increased competitive ability hypothesis: genetic-based trait variation and herbivory resistance trade-offs. Biol. Invasions 20, 2647–2660 (2018).
Google Scholar
Shelby, N. et al. No difference in the competitive ability of introduced and native Trifolium provenances when grown with soil biota from their introduced and native ranges. AoB Plants 8, plw016 (2016).
Google Scholar
Harvey, J. A., Bukovinszky, T. & van der Putten, W. H. Interactions between invasive plants and insect herbivores: a plea for a multitrophic perspective. Biol. Conserv. 143, 2251–2259 (2010).
Google Scholar
Allen, W. J. et al. Multitrophic enemy release of invasive Phragmites australis and its introduced herbivores in North America. Biol. Invasions 17, 3419–3432 (2015).
Google Scholar
Kim, T. N. & Underwood, N. Plant neighborhood effects on herbivory: damage is both density and frequency dependent. Ecology 96, 1431–1437 (2015).
Google Scholar
Bartomeus, I., Vilà, M. & Santamaría, L. Contrasting effects of invasive plants in plant-pollinator networks. Oecologia 155, 761–770 (2008).
Google Scholar
Lekberg, Y., Gibbons, S. M., Rosendahl, S. & Ramsey, P. W. Severe plant invasions can increase mycorrhizal fungal abundance and diversity. ISME J. 7, 1424–1433 (2013).
Google Scholar
Fernandez-Conradi, P., Jactel, H., Robin, C., Tack, A. J. M. & Castagneyrol, B. Fungi reduce preference and performance of insect herbivores on challenged plants. Ecology 99, 300–311 (2018).
Google Scholar
Reinhart, K. O. & Callaway, R. M. Soil biota and invasive plants. N. Phytol. 170, 445–457 (2006).
Google Scholar
Gioria, M. & Osborne, B. A. Resource competition in plant invasions: emerging patterns and research needs. Front. Plant Sci. 5, 501 (2014).
Google Scholar
Frost, C. M. et al. Using ecological network theory to predict biological invasions. Trends Ecol. Evol. 34, 831–843 (2019).
Google Scholar
Sauve, A. M. C., Thébault, E., Pocock, M. J. O. & Fontaine, C. How plants connect pollination and herbivory networks and their contribution to community stability. Ecology 97, 908–917 (2016).
Google Scholar
Pilosof, S., Porter, M. A., Pascual, M. & Kéfi, S. The multilayer nature of ecological networks. Nat. Ecol. Evol. 1, 0101 (2017).
Google Scholar
Weir, B. S., Turner, S. J., Silvester, W. B., Park, D. C. & Young, J. M. Unexpectedly diverse Mesorhizobium strains and Rhizobium leguminosarum nodulate native legume genera of New Zealand, while introduced legume weeds are nodulated by Bradyrhizobium species. Appl. Environ. Microbiol. 70, 5980–5987 (2004).
Google Scholar
Cappuccino, N. & Carpenter, D. Invasive exotic plants suffer less herbivory than non-invasive exotic plants. Biol. Lett. 1, 435–438 (2005).
Google Scholar
Liu, H., Stiling, P. & Pemberton, R. W. Does enemy release matter for invasive plants? evidence from a comparison of insect herbivore damage among invasive, non-invasive and native congeners. Biol. Invasions 9, 773–781 (2007).
Google Scholar
Howell, C. Consolidated List of Environmental Weeds in New Zealand. DOC Research & Development Series 292 (Department of Conservation, 2008).
Ghanizadeh, H. & Harrington, K. C. Weed management in New Zealand pastures. Agronomy 9, 448 (2019).
Google Scholar
Kos, M., Tuijl, M. A. B., de Roo, J., Mulder, P. P. J. & Bezemer, T. M. Species-specific plant–soil feedback effects on aboveground plant-insect interactions. J. Ecol. 103, 904–914 (2015).
Google Scholar
Heinen, R., Biere, A. & Bezemer, T. M. Plant traits shape soil legacy effects on individual plant–insect interactions. Oikos 129, 261–273 (2020).
Google Scholar
Bezemer, T. M et al. Above‐and below‐ground herbivory effects on below‐ground plant–fungus interactions and plant–soil feedback responses. J. Ecol. 101, 325–333 (2013).
Google Scholar
Heinze, J., Wacker, A. & Kulmatiski, A. Plant–soil feedback effects altered by aboveground herbivory explain plant species abundance in the landscape. Ecology 101, e03023 (2020).
Google Scholar
Müller, C. B., Adriaanse, I. C. T., Belshaw, R. & Godfray, H. C. J. The structure of an aphid-parasitoid community. J. Anim. Ecol. 68, 346–370 (1999).
Google Scholar
R Core Team. R: a language and environment for statistical computing. Version 3.6.1. R Foundation for Statistical Computing http://www.R-project.org (2019).
Bates, D. et al. lme4: linear mixed-effects models using ‘Eigen’ and S4. R package version 1.1-21 http://CRAN.R-project.org/package=lme4 (2019).
Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. emmeans: estimated marginal means, aka least-squares means. R package version 1.3.5.1 http://CRAN.R-project.org/package=emmeans (2019).
Dormann, C. F., Fruend, J. & Gruber, B. bipartite: visualising bipartite networks and calculating some (ecological) indices. R package version 2.13 http://CRAN.R-project.org/package=bipartite (2019).
Source: Ecology - nature.com