in

Experimental identification and in silico prediction of bacterivory in green algae

  • 1.

    Jost C, Lawrence CA, Campolongo F, Van De Bund W, Hill S, DeAngelis DL. The effects of mixotrophy on the stability and dynamics of a simple planktonic food web model. Theor Popul Biol. 2004;66:37–51.

    PubMed  Article  Google Scholar 

  • 2.

    Tittel J, Bissinger V, Zippel B, Gaedke U, Bell E, Lorke A, et al. Mixotrophs combine resource use to outcompete specialists: Implications for aquatic food webs. Proc Natl Acad Sci. 2011;100:12776–81.

    Article  CAS  Google Scholar 

  • 3.

    Ward BA, Follows MJ. Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux. Proc Natl Acad Sci. 2016;113:2958–63.

    CAS  PubMed  Article  Google Scholar 

  • 4.

    Hansen PJ, Tillmann U. Mixotrophy among dinoflagellates—prey selection, physiology and ecological imporance. In: Subba Rao DV, editor. Dinoflagellates: classification, evolution, physiology and ecological significance. Hauppauge, NY, USA: Nova; 2020;201–60.

  • 5.

    Unrein F, Gasol JM, Not F, Forn I, Massana R. Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. ISME J. 2014;8:164–76.

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Anderson R, Charvet S, Hansen P. Mixotrophy in chlorophytes and haptophytes – effect of irradiance, macronutrient, micronutrient and vitamin limitation. Front Microbiol. 2018;9:1704.

    PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Lewitus AJ, Caron DA, Miller KR. Effect of light and glycerol on the organization of the photosynthetic apparatus in the facultative heterotroph Pyrenomonas salina (cryptophyceae). J Phycol. 1991;27:578–87.

    Article  Google Scholar 

  • 8.

    Du YooY, Seong KA, Jeong HJ, Yih W, Rho J-R, Nam SW, et al. Mixotrophy in the marine red-tide cryptophyte Teleaulax amphioxeia and ingestion and grazing impact of cryptophytes on natural populations of bacteria in Korean coastal waters. Harmful Algae. 2017;68:105–17.

    Article  Google Scholar 

  • 9.

    Caron DA, Porter KG, Sanders RW. Carbon, nitrogen, and phosphorus budgets for the mixotrophic phytoflagellate Poterioochromonas malhamensis (Chrysophyceae) during bacterial ingestion. Limnol Oceanogr. 1990;35:433–43.

    CAS  Article  Google Scholar 

  • 10.

    Holen DA, Boraas ME. Mixotrophy in chrysophytes. Chrysophyte algae. Cambridge, UK: Cambridge University Press; 1995;119–40.

  • 11.

    Fenchel T. Ecology of heterotrophic microflagellates. II. Bioenerg growth Mar Ecol Prog Ser. 1982;8:225–31.

    Article  Google Scholar 

  • 12.

    Rottberger J, Gruber A, Boenigk J, Kroth P. Influence of nutrients and light on autotrophic, mixotrophic and heterotrophic freshwater chrysophytes. Aquat Micro Ecol. 2013;71:179–91.

    Article  Google Scholar 

  • 13.

    Bell EM, Laybourn-Parry J. Mixotrophy in the antarctic phytoflagellate, Pyramimonas gelidicola (Chlorophyta: Prasinophyceae). J Phycol. 2003;39:644–9.

    Article  Google Scholar 

  • 14.

    McKie-Krisberg ZM, Sanders RW. Phagotrophy by the picoeukaryotic green alga Micromonas: implications for Arctic Oceans. ISME J. 2014;8:1953–61.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    McKie-Krisberg ZM, Gast RJ, Sanders RW. Physiological responses of three species of Antarctic mxotrophic phytoflagellates to changes in light and dissolved nutrients. Micro Ecol. 2015;70:21–29.

    CAS  Article  Google Scholar 

  • 16.

    Paasch A. Physiological and genomic characterization of phagocytosis in green algae. New York, NY, USA: American Museum of Natural History; 2017.

  • 17.

    Not F, Latasa M, Scharek R, Viprey M, Karleskind P, Balagué V, et al. Protistan assemblages across the Indian Ocean, with a specific emphasis on the picoeukaryotes. Deep Res Part I Oceanogr Res Pap. 2008;55:1456–73.

    Article  Google Scholar 

  • 18.

    Shi XL, Marie D, Jardillier L, Scanlan DJ, Vaulot D. Groups without cultured representatives dominate eukaryotic picophytoplankton in the oligotrophic South East Pacific Ocean. PLoS ONE. 2009;4:e7657.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 19.

    Rii YM, Duhamel S, Bidigare RR, Karl DM, Repeta DJ, Church MJ. Diversity and productivity of photosynthetic picoeukaryotes in biogeochemically distinct regions of the South East Pacific Ocean. Limnol Oceanogr. 2016;61:806–24.

    Article  Google Scholar 

  • 20.

    Maruyama S, Kim E. A modern descendant of early green algal phagotrophs. Curr Biol. 2013;23:1081–4.

    CAS  PubMed  Article  Google Scholar 

  • 21.

    O’Kelly C. Flagellar apparatus architecture and the phylogeny of ‘green’ algae: Chlorophytes, Euglenoids, Glaucophytes. In: Menzel D, editor. The cytoskeleton of the algae. Boca Raton: CRC Press; 1992. p. 315–41.

    Google Scholar 

  • 22.

    Burns JA, Pittis AA, Kim E. Gene-based predictive models of trophic modes suggest Asgard archaea are not phagocytotic. Nat Ecol Evol. 2018;2:697–704.

    PubMed  Article  Google Scholar 

  • 23.

    Wilken S, Yung CCM, Hamilton M, Hoadley K, Nzongo J, Eckmann C, et al. The need to account for cell biology in characterizing predatory mixotrophs in aquatic environments. Philos Trans R Soc B Biol Sci. 2019;374:20190090.

    CAS  Article  Google Scholar 

  • 24.

    Inouye I, Hori T, Chihara M. Absolute configuration analysis of the flagellar apparatus of Pterosperma Cristatum (Prasinophyceae) and consideration of Its phylogenetic position. J Phycol. 1990;26:329–44.

    Article  Google Scholar 

  • 25.

    Bhuiyan MAH, Faria DG, Horiguchi T, Sym SD, Suda S. Taxonomy and phylogeny of Pyramimonas vacuolata sp. nov. (Pyramimonadales, Chlorophyta). Phycologia. 2015;54:323–32.

    CAS  Article  Google Scholar 

  • 26.

    Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol. 2019;66:4–119.

    PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Burns JA, Paasch A, Narechania A, Kim E. Comparative genomics of a bacterivorous green alga reveals evolutionary causalities and consequences of phago-mixotrophic mode of nutrition. Genome Biol Evol. 2015;7:3047–61.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Guillard R. Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley WH, editors. Culture of marine invertebrate animals. 1975. New York: Plenum Press; 1975. p. 22–60.

  • 29.

    Cho J-C, Giovannoni SJ. Pelagibaca bermudensis gen. nov., sp. nov., a novel marine bacterium within the Roseobacter clade in the order Rhodobacterales. Int J Syst Evol Microbiol. 2006;56:855–9.

    CAS  PubMed  Article  Google Scholar 

  • 30.

    Thrash JC, Cho J-C, Ferriera S, Johnson J, Vergin KL, Giovannoni SJ. Genome sequences of Pelagibaca bermudensis HTCC2601T and Maritimibacter alkaliphilus HTCC2654T, the type strains of two marine Roseobacter genera. J Bacteriol. 2010;192:5552–3.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    First MR, Park NY, Berrang ME, Meinersmann RJ, Bernhard JM, Gast RJ, et al. Ciliate ingestion and digestion: Flow cytometric measurements and regrowth of a digestion-resistant Campylobacter jejuni. J Eukaryot Microbiol. 2012;59:12–19.

    PubMed  Article  Google Scholar 

  • 32.

    Sherr BF, Sherr EB, Fallon RD. Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl Environ Microbiol. 1987;53:958–65.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Vazquez-Dominguez E, Peters F, Gasol JM, Vaqué D. Measuring the grazing losses of picoplankton: methodological improvements in the use of fluorescently labeled tracers combined with flow cytometry. Aquat Micro Ecol. 1999;20:119–28.

    Article  Google Scholar 

  • 34.

    Leebens-Mack J, Barker M, Carpenter EJ. One thousand plant transcriptomes and the phylogenomics of green plants. Nature. 2019;574:679–85.

    Article  CAS  Google Scholar 

  • 35.

    Wincker P. A thousand plants’ phylogeny. Nat Plants. 2019;5:1106–7.

    PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, et al. The marine microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLOS Biol. 2014;12:e1001889.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 37.

    Johnson LK, Alexander H, Brown CT. Re-assembly, quality evaluation, and annotation of 678 microbial eukaryotic reference transcriptomes. Gigascience. 2019;8:1–12.

    Google Scholar 

  • 38.

    Besemer J. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29:2607–18.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.

    PubMed  PubMed Central  Google Scholar 

  • 40.

    Gawryluk RMR, Tikhonenkov DV, Hehenberger E, Husnik F, Mylnikov AP, Keeling PJ. Non-photosynthetic predators are sister to red algae. Nature. 2019;572:240–3.

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Newcombe RG. Interval estimation for the difference between independent proportions: comparison of eleven methods. Stat Med. 1998;17:873–90.

    CAS  PubMed  Article  Google Scholar 

  • 42.

    Kursa M, Rudnicki W. Feature selection with the Boruta package. J Stat Softw. 2010;36:1–13.

    Article  Google Scholar 

  • 43.

    Chasset PO. Probabilistic neural network for the R statistical language. https://github.com/chasset/pnn. Github. 2013.

  • 44.

    Maia R, Eliason CM, Bitton P-P, Doucet SM, Shawkey MD. pavo: an R package for the analysis, visualization and organization of spectral data. Methods Ecol Evol. 2013;4:906–13.

    Google Scholar 

  • 45.

    Jimenez V, Burns J, Le Gall F, Not F, Vaulot D. No evidence of phago-mixotropy in Micromonas polaris, the dominant picophytoplankton species in the Arctic. J Phycol. 2021. https://doi.org/10.1111/jpy.13125.

  • 46.

    R Core Team. R development core team. R A Lang Environ Stat Comput. Vienna: R Foundation for Statistical Computing; 2016.

  • 47.

    Figueroa-Martinez F, Nedelcu AM, Smith DR, Reyes-Prieto A. When the lights go out: the evolutionary fate of free-living colorless green algae. N. Phytol. 2015;206:972–82.

    Article  Google Scholar 

  • 48.

    Nakada T, Misawa K, Nozaki H. Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses. Mol Phylogenet Evol. 2008;48:281–91.

    CAS  PubMed  Article  Google Scholar 

  • 49.

    Johnson I. The molecular probes handbook: a guide to fluorescent probes and labeling technologies. 11th ed. Waltham, MA, USA: Life Technologies Corporation; 2010.

  • 50.

    Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, et al. Phylogeny and molecular evolution of the green algae. CRC Crit Rev Plant Sci. 2012;31:1–46.

    Article  Google Scholar 

  • 51.

    Leliaert F. Green algae: chlorophyta and streptophyta. Reference module in life sciences. Amsterdam, DK: Elsevier; 2019.

  • 52.

    Parke M, Adams I. The Pyramimonas-like motile stage of Halosphaera viridis Schmitz. Bull Res Counc Isr. 1961.

  • 53.

    Thorndsen J. Cymbomonas Schiller (Prasinophyceae) reinvestigated by light and electron microscopy. Arch fur Protistenkd. 1988;136:327–36.

    Article  Google Scholar 

  • 54.

    González JM, Sherr BF, Sherr EB. Digestive enzyme activity as a quantitative measure of protistan grazing: the acid lysozyme assay for bacterivory. Mar Ecol Prog Ser. 1993;100:197–206.

    Article  Google Scholar 

  • 55.

    Moestrup Ø, Inouye I, Hori T. Ultrastructural studies on Cymbomonas tetramitiformis (Prasinophyceae). I. General structure, scale microstructure, and ontogeny. Can J Bot. 2003;81:657–71.

    Article  Google Scholar 

  • 56.

    Turmel M, Lopes dos Santos A, Otis C, Sergerie R, Lemieux C. Tracing the evolution of the plastome and mitogenome in the Chloropicophyceae uncovered convergent tRNA gene losses and a variant plastid genetic code. Genome Biol Evol. 2019;11:1275–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Lopes dos Santos A, Gourvil P, Tragin M, Noël M, Decelle J, Romac S, et al. Diversity and oceanic distribution of prasinophytes clade VII, the dominant group of green algae in oceanic waters. ISME J. 2017;11:512–28.

    PubMed  Article  Google Scholar 

  • 58.

    Lemieux C, Turmel M, Otis C, Pombert J-F. A streamlined and predominantly diploid genome in the tiny marine green alga Chloropicon primus. Nat Commun. 2019;10:4061.

    PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Zingone A, Borra M, Brunet C, Forlani G. Kooistra WHCF, Procaccini G. Phylogenetic position of Crustomatix stigmatica sp. nov. and Dolichomastix tenuilepis in relation to the mamiellales (Prasinophyceae, Chlorophyta). J Phycol. 2002;38:1024–39.

    CAS  Article  Google Scholar 

  • 60.

    Liang Z, Geng Y, Ji C, Du H, Wong CE, Zhang Q, et al. Mesostigma viride genome and transcriptome provide insights into the origin and evolution of Streptophyta. Adv Sci. 2020;7:1901850.

    CAS  Article  Google Scholar 

  • 61.

    Buckley CM, Gopaldass N, Bosmani C, Johnston SA, Soldati T, Insall RH, et al. WASH drives early recycling from macropinosomes and phagosomes to maintain surface phagocytic receptors. Proc Natl Acad Sci. 2016;113:E5906–15.

    CAS  PubMed  Article  Google Scholar 

  • 62.

    Shpak M, Kugelman JR, Varela-Ramirez A, Aguilera RJ. The phylogeny and evolution of deoxyribonuclease II: An enzyme essential for lysosomal DNA degradation. Mol Phylogenet Evol. 2008;47:841–54.

    CAS  PubMed  Article  Google Scholar 

  • 63.

    Gast RJ, McKie-Krisberg ZM, Fay SA, Rose JM, Sanders RW. Antarctic mixotrophic protist abundances by microscopy and molecular methods. FEMS Microbiol Ecol. 2014;89:388–401.

    CAS  PubMed  Article  Google Scholar 

  • 64.

    Mitra A, Flynn KJ, Tillmann U, Raven JA, Caron D, Stoecker DK, et al. Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition: Incorporation of diverse mixotrophic strategies. Protist. 2016;167:106–20.

    CAS  Article  Google Scholar 

  • 65.

    Kirkham AR, Lepère C, Jardillier LE, Not F, Bouman H, Mead A, et al. A global perspective on marine photosynthetic picoeukaryote community structure. ISME J. 2013;7:922–36.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Moon-van Der Staay SY, Wachter R De, Vaulot D. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature. 2001;409:607–10.

    CAS  PubMed  Article  Google Scholar 

  • 67.

    Worden A. Picoeukaryote diversity in coastal waters of the Pacific Ocean. Aquat Micro Ecol. 2006;43:165–75.

    Article  Google Scholar 

  • 68.

    Van Hannen EJ, Veninga M, Bloem J, Gons HJ, Laanbroek HJ. Genetic changes in the bacterial community structure associated with protistan grazers. Fundam Appl Limnol. 1999;145:25–38.

    Article  Google Scholar 

  • 69.

    Jürgens K, Güde H. The potential importance of grazing-resistant bacteria in planktonic systems. Mar Ecol Prog Ser. 1994;112:169–88.

    Article  Google Scholar 

  • 70.

    Jürgens K, Pernthaler J, Schalla S, Amann R. Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing. Appl Environ Microbiol. 1999;65:1241–50.

    PubMed  PubMed Central  Article  Google Scholar 

  • 71.

    Suzuki M. Effect of protistan bacterivory on coastal bacterioplankton diversity. Aquat Micro Ecol. 1999;20:261–72.

    Article  Google Scholar 

  • 72.

    Sherr EB, Sherr BF. Significance of predation by protists in aquatic microbial food webs. Antonie van Leeuwenhoek2. 2002;81:293–308.

    CAS  Article  Google Scholar 

  • 73.

    González J, Sherr EB, Sherr BF. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl Environ Microbiol. 1990;56:583–9.

    PubMed  PubMed Central  Article  Google Scholar 

  • 74.

    Sherr BF, Sherr EB, McDaniel J. Effect of protistan grazing on the frequency of dividing cells in bacterioplankton assemblages. Appl Environ Microbiol. 1992;58:2381–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 75.

    González J, Sherr EB, Sherr BF. Differential feeding by marine flagellates on growing vs starving bacteria, and on motile vs non-motile bacteria. Mar Ecol Prog Ser. 1993;102:257–67.

    Article  Google Scholar 

  • 76.

    del Giorgio PA, Gasol JM, Vaqué D, Mura P, Agustí S, Duarte CM. Bacterioplankton community structure: Protists control net production and the proportion of active bacteria in a coastal marine community. Limnol Oceanogr. 1996;41:1169–79.

    Article  Google Scholar 

  • 77.

    Andersen OK, Goldman JC, Caron DA, Dennett MR. Nutrient cycling in a microflagellate food chain: III. Phosphorus dynamics. Mar Ecol Prog Ser. 1986;31:47–55.

    CAS  Article  Google Scholar 

  • 78.

    Fenchel T. Protistan filter feeding. Prog Protistol. 1986;1:65–113.

    Google Scholar 

  • 79.

    Epstein S, Shiaris M. Size selective grazing of coastal bacterioplankton by natural assemblages of pigmented flagellates, colourless flagellates and ciliates. Micro Ecol. 1992;23:211–25.

    CAS  Article  Google Scholar 

  • 80.

    Montagnes D, Barbosa A, Boenigk J, Davidson K, Jurgens K, Macek M, et al. Selective feeding behaviour of key free-living protists: avenues for continued study. Aquat Micro Ecol. 2008;53:83–98.

    Article  Google Scholar 

  • 81.

    Pfister G, Arndt H. Food selectivity and feeding behaviour in omnivorous filter-feeding ciliates: a case study for Stylonychia. Eur J Protistol. 1998;34:446–57.

    Article  Google Scholar 

  • 82.

    Boenigk J, Arndt H. Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie Van Leeuwenhoek. 2002;81:465–80.

    PubMed  Article  Google Scholar 

  • 83.

    Pickup ZL, Pickup R, Parry JD. Growth of Acanthamoeba castellanii and Hartmannella vermiformis on live, heat-killed and DTAF-stained bacterial prey. FEMS Microbiol Ecol. 2007;61:264–72.

    CAS  PubMed  Article  Google Scholar 

  • 84.

    Legrand C, Johansson N, Johnsen G, Borsheim K, Graneli E. Phagotrophy and toxicity variation in mixotrophic Prymnesium patelliferum (Haptophyceae). Limnol Oceanogr. 2001;46:1208–14.

    Article  Google Scholar 

  • 85.

    Caron DA, Sanders RW, Lim EL, Marrasé C, Amaral LA, Whitney S, et al. Light-depend phagotrophy freshwater mixotrophic chrysophyte Dinobryon cylindricum. Micro. Ecol. 1993;25:93–111.

    CAS  Article  Google Scholar 

  • 86.

    Fenchel T. The microbial loop – 25 years later. J Exp Mar Bio Ecol. 2008;366:99–103.

    Article  Google Scholar 

  • 87.

    Tittel J, Bissinger V, Zippel B, Gaedke U, Bell E, Lorke A, et al. Mixotrophs combine resource use to outcompete specialists: Implications for aquatic food webs. Proc Natl Acad Sci. 2003;100:12776–81.

    CAS  PubMed  Article  Google Scholar 

  • 88.

    Moorthi S, Ptacnik R, Sanders R, Fischer R, Busch M, Hillebrand H. The functional role of planktonic mixotrophs in altering seston stoichiometry. Aquat Micro Ecol. 2017;79:235–45.

    Article  Google Scholar 

  • 89.

    Katechakis A, Haseneder T, Kling R, Stibor H. Mixotrophic versus photoautotrophic specialist algae as food for zooplankton: The light: nutrient hypothesis might not hold for mixotrophs. Limnol Oceanogr. 2005;50:1290–9.

    CAS  Article  Google Scholar 

  • 90.

    Weisse T, Anderson R, Arndt H, Calbet A, Hansen PJ, Montagnes D. Functional ecology of aquatic phagotrophic protists – concepts, limitations, and perspectives. Eur J Protistol. 2016;55:50–74.

    PubMed  Article  Google Scholar 

  • 91.

    Graham LE, Graham JM, Wilcox WL, Cook ME. Algae. 3rd ed. Madison, WI, USA: LJLM Press; 2016.

  • 92.

    Guillou L, Eikrem W, Chrétiennot-Dinet M-J, Le Gall F, Massana R, Romari K, et al. Diversity of picoplanktonic prasinophytes assessed by direct nuclear SSU rDNA sequencing of environmental samples and novel isolates retrieved from oceanic and coastal marine ecosystems. Protist. 2004;155:193–214.

    CAS  PubMed  Article  Google Scholar 

  • 93.

    Lemieux C, Otis C, Turmel M. Six newly sequenced chloroplast genomes from prasinophyte green algae provide insights into the relationships among prasinophyte lineages and the diversity of streamlined genome architecture in picoplanktonic species. BMC Genom. 2014;15:857.

    Article  CAS  Google Scholar 


  • Source: Ecology - nature.com

    SMART develops analytical tools to enable next-generation agriculture

    MIT Solve announces 2021 global challenges