in

Experimental warming differentially affects vegetative and reproductive phenology of tundra plants

  • 1.

    Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 5, 424–430 (2015).

    ADS 

    Google Scholar 

  • 2.

    Cohen, J. et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 7, 627–637 (2014).

    ADS 
    CAS 

    Google Scholar 

  • 3.

    Overland, J. E., Wang, M., Walsh, J. E. & Stroeve, J. C. Future Arctic climate changes: adaptation and mitigation time scales. Earth’s Future 2, 68–74 (2014).

    ADS 

    Google Scholar 

  • 4.

    Oberbauer, S. F. et al. Phenological response of tundra plants to background climate variation tested using the International Tundra Experiment. Philos. Trans. R. Soc. B Biol. Sci. 368, 1624 (2013).

  • 5.

    Prevéy, J. S. et al. Warming shortens flowering seasons of tundra plant communities. Nat. Ecol. Evol. 3, 45–52 (2019).

    PubMed 

    Google Scholar 

  • 6.

    Jabis, M. D., Winkler, D. E. & Kueppers, L. M. Warming acts through earlier snowmelt to advance but not extend alpine community flowering. Ecology https://doi.org/10.1002/ecy.3108 (2020).

  • 7.

    Beard, K. H., Kelsey, K. C., Leffler, A. J. & Welker, J. M. The missing angle: ecosystem consequences of phenological mismatch. Trends Ecol. Evol. 34, 885–888 (2019).

    PubMed 

    Google Scholar 

  • 8.

    Gallinat, A. S., Primack, R. B. & Wagner, D. L. Autumn, the neglected season in climate change research. Trends Ecol. Evol. 30, 169–176 (2015).

    PubMed 

    Google Scholar 

  • 9.

    Semenchuk, P. R. et al. High Arctic plant phenology is determined by snowmelt patterns but duration of phenological periods is fixed: an example of periodicity. Environ. Res. Lett. 11, 125006 (2016).

  • 10.

    Keenan, T. F. & Richardson, A. D. The timing of autumn senescence is affected by the timing of spring phenology: Implications for predictive models. Glob. Chang. Biol. 21, 2634–2641 (2015).

    ADS 
    PubMed 

    Google Scholar 

  • 11.

    Diepstraten, R. A. E., Jessen, T. D., Fauvelle, C. M. D. & Musiani, M. M. Does climate change and plant phenology research neglect the Arctic tundra? Ecosphere 9, e02362 (2018).

  • 12.

    Savage, J. A. A temporal shift in resource allocation facilitates flowering before leaf out and spring vessel maturation in precocious species. Am. J. Bot. 106, 113–122 (2019).

    PubMed 

    Google Scholar 

  • 13.

    Neuner, G. Frost resistance in alpine woody plants. Front. Plant Sci. 5, 654 (2014).

  • 14.

    Kuprian, E., Briceño, V. F., Wagner, J. & Neuner, G. Ice barriers promote supercooling and prevent frost injury in reproductive buds, flowers and fruits of alpine dwarf shrubs throughout the summer. Environ. Exp. Bot. 106, 4–12 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Vitasse, Y., Lenz, A. & Körner, C. The interaction between freezing tolerance and phenology in temperate deciduous trees. Front. Plant Sci. 5, 1–12 (2014).

    Google Scholar 

  • 16.

    Maron, J. L., Agrawal, A. A. & Schemske, D. W. Plant–herbivore coevolution and plant speciation. Ecology 100, 1–11 (2019).

    Google Scholar 

  • 17.

    Rafferty, N. E. & Ives, A. R. Effects of experimental shifts in flowering phenology on plant-pollinator interactions. Ecol. Lett. 14, 69–74 (2011).

    PubMed 

    Google Scholar 

  • 18.

    Fitter, A. H. & Fitter, R. S. R. Rapid changes in flowering time in British plants. Science 296, 1689–1691 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Post, E. Time in Ecology: A Theoretical Framework (Princeton University Press, 2019).

  • 20.

    Kharouba, H. M., Vellend, M., Sarfraz, R. M. & Myers, J. H. The effects of experimental warming on the timing of a plant-insect herbivore interaction. J. Anim. Ecol. 84, 785–796 (2015).

    PubMed 

    Google Scholar 

  • 21.

    Zohner, C. M., Mo, L. & Renner, S. S. Global warming reduces leaf-out and flowering synchrony among individuals. Elife 7, 1–15 (2018).

    Google Scholar 

  • 22.

    Wipf, S., Stoeckli, V. & Bebi, P. Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Clim. Change 94, 105–121 (2009).

    ADS 

    Google Scholar 

  • 23.

    Bjorkman, A. D., Elmendorf, S. C., Beamish, A. L., Vellend, M. & Henry, G. H. R. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades. Glob. Chang. Biol. 21, 4651–4661 (2015).

    ADS 
    PubMed 

    Google Scholar 

  • 24.

    Assmann, J. J. et al. Local snow melt and temperature—but not regional sea ice—explain variation in spring phenology in coastal Arctic tundra. Glob. Chang. Biol. 25, 2258–2274 (2019).

    ADS 
    PubMed 

    Google Scholar 

  • 25.

    Cooper, E. J., Dullinger, S. & Semenchuk, P. Late snowmelt delays plant development and results in lower reproductive success in the High Arctic. Plant Sci. 180, 157–167 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Kelsey, K. C. et al. Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities. Glob. Chang. Biol. 1–15 https://doi.org/10.1111/gcb.15505 (2020).

  • 27.

    Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Chang. Biol. 12, 1969–1976 (2006).

    ADS 

    Google Scholar 

  • 28.

    Panchen, Z. A. & Gorelick, R. Prediction of Arctic plant phenological sensitivity to climate change from historical records. Ecol. Evol. 7, 1325–1338 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Livensperger, C. et al. Earlier snowmelt and warming lead to earlier but not necessarily more plant growth. AoB Plants 8, 1–15 (2016).

    Google Scholar 

  • 30.

    Livensperger, C. et al. Experimentally warmer and drier conditions in an Arctic plant community reveal microclimatic controls on senescence. Ecosphere 10, e02677 (2019).

  • 31.

    Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Chang. Biol. 1922–1940 https://doi.org/10.1111/gcb.14619 (2019).

  • 32.

    Panchen, Z. A. et al. Substantial variation in leaf senescence times among 1360 temperate woody plant species: implications for phenology and ecosystem processes. Ann. Bot. 865–873 https://doi.org/10.1093/aob/mcv015 (2015).

  • 33.

    Wu, C. et al. Contrasting responses of autumn-leaf senescence to daytime and night-time warming. Nat. Clim. Chang. 8, 1092–1096 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 34.

    Zhu, W. et al. Extension of the growing season due to delayed autumn over mid and high latitudes in North America during 1982–2006. Glob. Ecol. Biogeogr. 21, 260–271 (2012).

    Google Scholar 

  • 35.

    Liu, Q. et al. Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Glob. Chang. Biol. 22, 3702–3711 (2016).

    ADS 
    PubMed 

    Google Scholar 

  • 36.

    Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. Meteorol. 169, 156–173 (2013).

    Google Scholar 

  • 37.

    Marchand, F. L. et al. Climate warming postpones senescence in High Arctic Tundra. Arct. Antarct. Alp. Res. 36, 390–394 (2004).

    Google Scholar 

  • 38.

    Steltzer, H. & Post, E. Seasons and life cycles. Science 324, 886–887 (2009).

    PubMed 

    Google Scholar 

  • 39.

    Jiang, L. L. et al. Relatively stable response of fruiting stage to warming and cooling relative to other phenological events. Ecology 97, 1961–1969 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Kharouba, H. M. et al. Global shifts in the phenological synchrony of species interactions over recent decades. Proc. Natl Acad. Sci. USA 115, 5211–5216 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Piao, S., Friedlingstein, P., Ciais, P., Viovy, N. & Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 21, 1–11 (2007).

    Google Scholar 

  • 42.

    Wookey, P. A. et al. Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Glob. Chang. Biol. 15, 1153–1172 (2009).

    ADS 

    Google Scholar 

  • 43.

    Arft, A. M. et al. Responses of Tundra plants to experimental warming: meta-analysis of the International Tundra Experiment. Ecol. Monogr. 69, 491–511 (1999).

    Google Scholar 

  • 44.

    Buttler, A. et al. Experimental warming interacts with soil moisture to discriminate plant responses in an ombrotrophic peatland. J. Veg. Sci. 26, 964–974 (2015).

    Google Scholar 

  • 45.

    Healy, N. C., Oberbauer, S. F. & Hollister, R. D. Examination of surface temperature modification by open-top chambers along moisture and latitudinal gradients in Arctic Alaska using thermal infrared photography. Remote Sens. 1–19 https://doi.org/10.3390/rs8010054 (2016).

  • 46.

    Elmendorf, S. C. et al. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol. Lett. 15, 164–175 (2012).

    PubMed 

    Google Scholar 

  • 47.

    Post, E., Steinman, B. A. & Mann, M. E. Acceleration of phenological advance and warming with latitude over the past century. Sci. Rep. 1–8 https://doi.org/10.1038/s41598-018-22258-0 (2018).

  • 48.

    Iler, A. M., Høye, T. T., Inouye, D. W. & Schmidt, N. M. Nonlinear flowering responses to climate: Are species approaching their limits of phenological change? Philos. Trans. R. Soc. B Biol. Sci. 368, 13–16 (2013).

    Google Scholar 

  • 49.

    Prevéy, J. et al. Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes. Glob. Chang. Biol. 23, 2660–2671 (2017).

    ADS 
    PubMed 

    Google Scholar 

  • 50.

    Wipf, S. & Rixen, C. A review of snow manipulation experiments in Arctic and Alpine Tundra ecosystems. Polar Res. 29, 95–109 (2010).

    Google Scholar 

  • 51.

    Bokhorst, S. et al. Variable temperature effects of open top chambers at polar and alpine sites explained by irradiance and snow depth. Glob. Chang. Biol. 19, 64–74 (2013).

    ADS 
    PubMed 

    Google Scholar 

  • 52.

    Zhu, J., Zhang, Y. & Wang, W. Interactions between warming and soil moisture increase overlap in reproductive phenology among species in an alpine meadow. Biol. Lett. 12, 1–4 (2016).

    ADS 

    Google Scholar 

  • 53.

    Kemppinen, J., Niittynen, P., Aalto, J., le Roux, P. C. & Luoto, M. Water as a resource, stress and disturbance shaping tundra vegetation. Oikos 128, 811–822 (2019).

    Google Scholar 

  • 54.

    Panchen, Z. A. & Gorelick, R. Canadian arctic archipelago conspecifics flower earlier in the high arctic than the mid-arctic. Int. J. Plant Sci. 177, 661–670 (2016).

    Google Scholar 

  • 55.

    Barrett, R. T. & Hollister, R. D. Arctic plants are capable of sustained responses to long-term warming. Polar Res. 35, 1–9 (2016).

    Google Scholar 

  • 56.

    Carbognani, M., Bernareggi, G., Perucco, F., Tomaselli, M. & Petraglia, A. Micro-climatic controls and warming effects on flowering time in alpine snowbeds. Oecologia 182, 573–585 (2016).

    ADS 
    PubMed 

    Google Scholar 

  • 57.

    Hollister, R. D., Webber, P. J. & Tweedie, C. E. The response of Alaskan Arctic Tundra to experimental warming: Differences between short- and long-term responses. Glob. Chang. Biol. 11, 525–536 (2005).

    ADS 

    Google Scholar 

  • 58.

    Mulder, C. P. H., Iles, D. T. & Rockwell, R. F. Increased variance in temperature and lag effects alter phenological responses to rapid warming in a subarctic plant community. Glob. Chang. Biol. 23, 801–814 (2017).

    ADS 
    PubMed 

    Google Scholar 

  • 59.

    Marion, G. M. et al. Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob. Chang. Biol. 3, 20–32 (1997).

    Google Scholar 

  • 60.

    Walker, M. D. et al. Plant community responses to experimental warming across the tundra biome. Proc. Natl Acad. Sci. USA 103, 1342–1346 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 61.

    Hollister, R. D. & Webber, P. J. Biotic validation of small open-top chambers in a tundra ecosystem. Glob. Chang. Biol. 6, 835–842 (2000).

    ADS 

    Google Scholar 

  • 62.

    Henry, G. H. R. & Molau, U. Tundra plants and climate change: The International Tundra Experiment (ITEX). Glob. Chang. Biol. 3, 1–9 (1997).

    ADS 

    Google Scholar 

  • 63.

    Welker, J. M., Molau, U., Parsons, A. N., Robinson, C. H. & Wookey, P. A. Responses of Dryas octopetala to ITEX environmental manipulations: a synthesis with circumpolar comparisons. Glob. Chang. Biol. 3, 61–73 (1997).

    ADS 

    Google Scholar 

  • 64.

    Basnett, S., Nagaraju, S. K., Ravikanth, G. & Devy, S. M. Influence of phylogeny and abiotic factors varies across early and late reproductive phenology of Himalayan Rhododendrons. Ecosphere 10, e02581 (2019).

  • 65.

    Panchen, Z. A. et al. Leaf out times of temperate woody plants are related to phylogeny, deciduousness, growth habit and wood anatomy. N. Phytol. 203, 1208–1219 (2014).

    CAS 

    Google Scholar 

  • 66.

    Davis, C. C., Willis, C. G., Primack, R. B. & Miller-Rushing, A. J. The importance of phylogeny to the study of phenological response to global climate change. Philos. Trans. R. Soc. B Biol. Sci. 365, 3202–3213 (2010).

    Google Scholar 

  • 67.

    Hänninen, H. et al. Experiments are necessary in process-based tree phenology modelling. Trends Plant Sci. 24, 199–209 (2019).

    PubMed 

    Google Scholar 

  • 68.

    Hanson, P. J. & Walker, A. P. Advancing global change biology through experimental manipulations: Where have we been and where might we go? Glob. Chang. Biol. 26, 287–299 (2020).

    ADS 
    PubMed 

    Google Scholar 

  • 69.

    Tang, J. et al. Emerging opportunities and challenges in phenology: a review. Ecosphere 7, 1–17 (2016).

    Google Scholar 

  • 70.

    Ettinger, A. K. et al. Winter temperatures predominate in spring phenological responses to warming. Nat. Clim. Chang. 10, 1137–1142 (2020).

  • 71.

    Augspurger, C. K. Reconstructing patterns of temperature, phenology, and frost damage over 124 years: Spring damage risk is increasing. Ecology 94, 41–50 (2013).

    PubMed 

    Google Scholar 

  • 72.

    Caradonna, P. J. & Bain, J. A. Frost sensitivity of leaves and fl owers of subalpine plants is related to tissue type and phenology. J. Ecol. 55–64 https://doi.org/10.1111/1365-2745.12482 (2016).

  • 73.

    Gezon, Z. J., Inouye, D. W. & Irwin, R. E. Phenological change in a spring ephemeral: Implications for pollination and plant reproduction. Glob. Chang. Biol. 22, 1779–1793 (2016).

    ADS 
    PubMed 

    Google Scholar 

  • 74.

    Iler, A. M. et al. Reproductive losses due to climate change-induced earlier flowering are not the primary threat to plant population viability in a perennial herb. J. Ecol. 107, 1931–1943 (2019).

    Google Scholar 

  • 75.

    CaraDonna, P. J. & Waser, N. M. Temporal flexibility in the structure of plant–pollinator interaction networks. Oikos 129, 1369–1380 (2020).

    Google Scholar 

  • 76.

    Fründ, J., Dormann, C. F. & Tscharntke, T. Linné’s floral clock is slow without pollinators – flower closure and plant-pollinator interaction webs. Ecol. Lett. 14, 896–904 (2011).

    PubMed 

    Google Scholar 

  • 77.

    Song, C. & Saavedra, S. Structural stability as a consistent predictor of phenological events. Proc. R. Soc. B Biol. Sci. 285, 20180767 (2018).

  • 78.

    Saavedra, S., Rohr, R. P., Olesen, J. M. & Bascompte, J. Nested species interactions promote feasibility over stability during the assembly of a pollinator community. Ecol. Evol. 6, 997–1007 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Mosbacher, J. B., Michelsen, A., Stelvig, M., Hjermstad-Sollerud, H. & Schmidt, N. M. Muskoxen modify plant abundance, phenology, and nitrogen dynamics in a high Arctic Fen. Ecosystems 22, 1095–1107 (2019).

    Google Scholar 

  • 80.

    Barboza, P. S., Van Someren, L. L., Gustine, D. D. & Syndonia Bret-Harte, M. The nitrogen window for arctic herbivores: Plant phenology and protein gain of migratory caribou (Rangifer tarandus). Ecosphere 9, e02073 (2018).

  • 81.

    Gougherty, A. V. & Gougherty, S. W. Sequence of flower and leaf emergence in deciduous trees is linked to ecological traits, phylogenetics, and climate. N. Phytol. 220, 121–131 (2018).

    Google Scholar 

  • 82.

    Bjorkman, A. D. et al. Status and trends in Arctic vegetation: evidence from experimental warming and long-term monitoring. Ambio 49, 678–692 (2020).

    PubMed 

    Google Scholar 

  • 83.

    Loe, L. E. et al. The neglected season: Warmer autumns counteract harsher winters and promote population growth in Arctic reindeer. Glob. Chang. Biol. 993–1002 https://doi.org/10.1111/gcb.15458 (2020).

  • 84.

    Ueyama, M. et al. Growing season and spatial variations of carbon fluxes of Arctic and boreal ecosystems in Alaska (USA). Ecol. Appl. 23, 1798–1816 (2013).

    PubMed 

    Google Scholar 

  • 85.

    White, M. A., Running, S. W. & Thornton, P. E. The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest. Int. J. Biometeorol. 42, 139–145 (1999).

  • 86.

    Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Chang. 9, 852–857 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 87.

    Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 3–7 (2008).

    Google Scholar 

  • 88.

    Radville, L., Post, E. & Eissenstat, D. M. On the sensitivity of root and leaf phenology to warming in the Arctic. Arctic Antarct. Alp. Res. 50, S100020 (2018).

  • 89.

    Sloan, V. L., Fletcher, B. J. & Phoenix, G. K. Contrasting synchrony in root and leaf phenology across multiple sub-Arctic plant communities. J. Ecol. 104, 239–248 (2016).

    CAS 

    Google Scholar 

  • 90.

    Danby, R. K. & Hik, D. S. Responses of white spruce (Picea glauca) to experimental warming at a subarctic alpine treeline. Glob. Chang. Biol. 13, 437–451 (2007).

    ADS 

    Google Scholar 

  • 91.

    Dabros, A., Fyles, J. W. & Strachan, I. B. Effects of open-top chambers on physical properties of air and soil at post-disturbance sites in northwestern Quebec. Plant Soil 333, 203–218 (2010).

  • 92.

    Finger Higgens, R. A. et al. Changing Lake Dynamics indicate a drier Arctic in Western Greenland. J. Geophys. Res. Biogeosci. 124, 870–883 (2019).

    Google Scholar 

  • 93.

    Leuzinger, S. et al. Do global change experiments overestimate impacts on terrestrial ecosystems? Trends Ecol. Evol. 26, 236–241 (2011).

    PubMed 

    Google Scholar 

  • 94.

    Molau, U. & MØlgaard, P. ITEX Manual (1996).

  • 95.

    Post, E. et al. The polar regions in a 2 °C warmer world. Sci. Adv. 5, eaaw9883 (2019).

  • 96.

    Cayuela, L., Granzow-de la Cerda, Í., Albuquerque, F. S. & Golicher, D. J. Taxonstand: An r package for species names standardisation in vegetation databases. Methods Ecol. Evol. 3, 1078–1083 (2012).

    Google Scholar 

  • 97.

    C3S. ERA5: fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://cds.climate.copernicus.eu/cdsapp#!/home%0A (2017).

  • 98.

    Kittel, T. G. F. et al. Contrasting long-term alpine and subalpine precipitation trends in a mid-latitude North American mountain system, Colorado Front Range, USA. Plant Ecol. Divers. 8, 607–624 (2015).

    Google Scholar 

  • 99.

    Therneau, T. A package for survival analysis in S. Citeseer 1–83 (2020).

  • 100.

    R Core Team. R: A Language and Environment for Statistical Computing (2019).

  • 101.

    Bürkner, P.-C. brms: An R package for bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

  • 102.

    van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).

    Google Scholar 

  • 103.

    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences linked references are available on JSTOR for this article: inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).

    MATH 

    Google Scholar 

  • 104.

    Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).

    ADS 

    Google Scholar 

  • 105.

    Pebesma, E. Simple features for R: standardized support for spatial vector data. R J 10, 439–446 (2018).

    Google Scholar 

  • 106.

    Wickham, H. Elegant Graphics for Data Analysis Media Vol. 35 (Springer Publishing Company, Incorporated, 2009).

  • 107.

    Collins, C. cour10eygrace/OTC_synthesis_analyses: release for Nature Communications manuscript (Version v1.0.3). Zenodo https://doi.org/10.5281/zenodo.4763165 (2021).


  • Source: Ecology - nature.com

    Southward decrease in the protection of persistent giant kelp forests in the northeast Pacific