in

Exploratory and territorial behavior in a reintroduced population of Iberian lynx

  • 1.

    Seddon, P. J., Armstrong, D. P. & Maloney, R. F. Developing the science of reintroduction biology. Conserv. Biol. 21, 303–312 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Seddon, P. J., Griffiths, C., Soorae, P. & Armstrong, D. P. Reversing defaunation: Restoring species in a changing world. Science 345, 406–412 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Pérez, I. et al. What is wrong with current translocations? A review and a decision-making proposal. Front. Ecol. Environ. 10, 494–501 (2012).

    Article 

    Google Scholar 

  • 4.

    Brichieri-Colombi, T. A. & Moehrenschlager, A. Alignment of threat, effort, and perceived success in North American conservation translocations. Conserv. Biol. 30, 1159–1172 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Swan, K. D., Lloyd, N. A. & Moehrenschlager, A. Projecting further increases in conservation translocations: A Canadian case study. Biol. Conserv. 228, 175–182 (2018).

    Article 

    Google Scholar 

  • 6.

    Wolf, C., Griffith, B., Reed, C. & Temple, S. Avian and mammalian translocations: Update and reanalysis of 1987 survey data. Conserv. Biol 10, 1142–1154 (1996).

    Article 

    Google Scholar 

  • 7.

    Breitenmoser, U., Breitenmoser-Wursten, C., Carbyn, L. N. & Funk, S. M. Assessment of carnivore reintroductions. In Carnivore Conservation (eds Gittleman, J. L. et al.) 241–280 (Cambridge University Press and The Zoological Society of London, 2001).

    Google Scholar 

  • 8.

    Vandel, J. M., Sthal, P., Herrenschmidt, V. & Marboutin, E. Reintroduction of the lynx into the Vosges mountain massif: From animal survival and movements to population development. Biol. Conserv. 131, 370–385 (2006).

    Article 

    Google Scholar 

  • 9.

    Saltz, D., Rowen, M. & Rubenstein, D. I. The effect of space-use patterns of reintroduced Asian wild ass on effective population size. Conserv. Biol. 14, 1852–1861 (2000).

    Google Scholar 

  • 10.

    Reynolds, M. H. et al. Space use and reintroduction of Laysan teal. Anim. Conserv. 15, 305–317 (2012).

    Article 

    Google Scholar 

  • 11.

    Gilpin, M. E. & Soulé, M. E. Minimum viable populations: processes of species extinction. In Conservation biology: The science of scarcity and diversity (ed. Soulé, M. E.) 19–34 (Sinauer Associates, 1986).

    Google Scholar 

  • 12.

    Snyder, N. F. R. et al. Limitations of captive breeding in endangered species recovery. Conserv. Biol 10, 338–348 (1996).

    Article 

    Google Scholar 

  • 13.

    McCarthy, M. A., Armstrong, D. P. & Runge, M. C. Adaptive management of reintroduction. In Reintroduction Biology (eds Ewen, J. G. et al.) 256–289 (Wiley, 2012).

    Chapter 

    Google Scholar 

  • 14.

    Colomer, M. A., Oliva-Vidal, P., Jiménez, J., Martínez, J. M. & Margalida, A. Prioritizing removal actions for the reintroduction of endangered species: Insights from bearded vulture simulation modeling. Anim. Conserv. 23, 396–406 (2020).

    Article 

    Google Scholar 

  • 15.

    Serrouya, R. et al. Saving endangered species using adaptive management. Proc. Natl. Acad. Sci. 116, 6181–6186 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Rodríguez, A. & Delibes, M. El lince ibérico (Lynx pardina) en España: Distribución y problemas de conservación (Colección técnica. ICONA, 1990).

    Google Scholar 

  • 17.

    Gil-Sánchez, J. M. & McCain, E. B. Former range and decline of the Iberian lynx (Lynx pardinus) reconstructed using verified records. J. Mamm. 92, 1081–1090 (2011).

    Article 

    Google Scholar 

  • 18.

    Casas-Marce, M. et al. Spatiotemporal dynamics of genetic variation in the Iberian lynx long its path to extinction reconstructed with ancient DNA. Mol. Biol. Evol. 34, 2893–2907 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Guzmán, J. N. El lince ibérico (Lynx pardinus) en España y Portugal (Censo-diagnóstico de sus poblaciones. DGCN, Ministerio de Medio Ambiente, 2004).

    Google Scholar 

  • 20.

    Simón, M. A. et al. Reverse of the decline of the endangered Iberian Lynx: Saving the Iberian Lynx. Conserv. Biol. 26, 731–736 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Vargas, A. et al. The Iberian Lynx Lynx pardinus conservation breedingprogram: Iberian lynx conservation breeding program. Int. Zoo Yearbook 42, 190–198 (2008).

    Article 

    Google Scholar 

  • 22.

    Simón, M. A. et al. Recuperación del lince ibérico en España y Portugal: situación actual de sus poblaciones (XIII Congreso SECEM. Guadalajara, 2017).

    Google Scholar 

  • 23.

    Aranda, et al. La reintroducción del lince ibérico en Castilla-La Mancha (XIII Congreso SECEM, 2017).

    Google Scholar 

  • 24.

    Buderman, F., Hooten, M. B., Ivan, J. S. & Shenk, T. M. Large-scale movement behavior in a reintroduced predator population. Ecography 41, 126–139 (2017).

    Article 

    Google Scholar 

  • 25.

    Revilla, E., Wiegand, T., Palomares, F., Ferreras, P. & Delibes, M. Effects of matrix heterogeneity on animal dispersal: From individual behavior to metapopulation-level parameters. Am. Nat. 164, E130–E153 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Ferreras, P. et al. Proximate and ultimate causes of dispersal in the Iberian Lynx Lynx pardinus. Behav. Ecol. 15, 31–40 (2004).

    Article 

    Google Scholar 

  • 27.

    Palomares, F. et al. Iberian Lynx in a fragmented landscape: Predispersal, dispersal, and postdispersal habitats. Conserv. Biol. 14, 809–818 (2000).

    Article 

    Google Scholar 

  • 28.

    Gastón, A. et al. Response to agriculture by a woodland species depends on cover type and behavioural state: Insights from resident and dispersing Iberian Lynx. J. Appl. Ecol. 53, 814–824 (2016).

    Article 

    Google Scholar 

  • 29.

    Blázquez-Cabrera, S. et al. Influence of separating home range and dispersal movements on characterizing corridors and effective distances. Landsc. Ecol. 31, 2355–2366 (2016).

    Article 

    Google Scholar 

  • 30.

    Ferreras, P. Landscape structure and asymmetrical inter-patch connectivity in a metapopulation of the endangered Iberian lynx. Biol. Conserv. 100, 125–136 (2001).

    Article 

    Google Scholar 

  • 31.

    Stoinski, T., Beck, B., Bloomsmith, M. & Maple, T. A. Behavioral comparison of captive-born, reintroduced golden lion tamarins and their wild-born offspring. Behaviour 140, 137–160 (2003).

    Article 

    Google Scholar 

  • 32.

    Margalida, A. et al. Uneven large-scale movement patterns in wild and reintroduced pre-adult bearded vultures: Conservation implications. PLoS One 8, e65857 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Berger-TAL, O. & Saltz, D. Using the movement patterns of reintroduced animals to improve reintroduction success. Curr. Zool. 60, 515–526 (2014).

    Article 

    Google Scholar 

  • 34.

    Ferreras, P., Beltrán, J. F., Aldama, J. J. & Delibes, M. Spatial organization and land tenure system of the endangered Iberian lynx (Lynx pardinus). J. Zool. 243, 163–189 (1997).

    Article 

    Google Scholar 

  • 35.

    Benson, J. F., Chamberlain, M. J. & Leopold, B. D. Land tenure and occupation of vacant home ranges by bobcats (Lynx rufus). J. Mamm. 85, 983–988 (2004).

    Article 

    Google Scholar 

  • 36.

    López-Parra, M. et al. Change in demographic patterns of the Doñana Iberian lynx Lynx pardinus: Management implications and conservation perspectives. Oryx 46, 403–413 (2012).

    Article 

    Google Scholar 

  • 37.

    Palomares, F., Delibes, M., Revilla, E., Calzada, J. & Fedriani, J. M. Spatial ecology of Iberian Lynx and abundance of European rabbits in Southwestern Spain. Wildl. Monogr. 148, 1–136 (2001).

    Google Scholar 

  • 38.

    Simón, M. A. et al. Ten years conserving the Iberian lynx (Consejería de Agricultura, Pesca y Medio Ambiente. Junta de Andalucía, 2012).

    Google Scholar 

  • 39.

    Gautestad, A. O. Memory matters: Influence from a cognitive map on animal space use. J. Theor. Biol. 287, 26–36 (2011).

    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Powell, R. A. Movements, home ranges, activity, and dispersal. In Carnivore Ecology and Conservation (eds Boitani, L. & Powell, R. A.) 188–217 (Oxford University Press, 2012).

    Chapter 

    Google Scholar 

  • 41.

    Figueiredo, A. et al. Reintroduction of the Iberian lynx (Lynx pardinus): A preliminary case study in Extremadura, Spain. J. Ethol. 37, 343–351 (2019).

    Article 

    Google Scholar 

  • 42.

    Sarmento, P., Carrapato, C., Eira, C. & Silva, J. P. Spatial organization and social relations in a reintroduced population of endangered Iberian Lynx Lynx pardinus. Oryx 53, 344–355 (2017).

    Article 

    Google Scholar 

  • 43.

    Sarmento, P. & Carrapato, C. The use of spatially explicit capture-recapture models for estimating Iberian lynx abundance in a newly reintroduced population. Mamm. Biol. 98, 11–16 (2019).

    Article 

    Google Scholar 

  • 44.

    Blázquez-Cabrera, S., Ciudad, C., Gastón, A., Simón, M. A. & Saura, S. Identification of strategic corridors for restoring landscape connectivity: Application to the Iberian Lynx. Anim. Conserv. 22, 210–219 (2018).

    Article 

    Google Scholar 

  • 45.

    IBERLINCE Team Life+IBERLINCE Recovery of the historical distribution for Iberian Lynx (Lynx pardinus) in Spain and Portugal. (LIFE10NAT/ES/570) [WWW Document]. http://www.iberlince.eu/index.php/eng/project/description (2018).

  • 46.

    GAAS—Grupo Asesor de Aspectos Sanitarios del Lince Ibérico. Manual sanitario del lince ibérico. Versión 2.1. http://www.lynxexsitu.es/ficheros/documentos_pdf/85/Manual_Sanitario_Lince_Ib_2014.pdf (2014)

  • 47.

    White, G. C. & Garrott, R. A. Analysis of Wildlife Radio Tracking Data (Harcourt Brace Jovanovich, 1990).

    Google Scholar 

  • 48.

    Laver, P. N. & Kelly, M. J. A critical review of home range studies. J. Wildl. Manag. 72, 290–298 (2008).

    Article 

    Google Scholar 

  • 49.

    Kovach, W. L. Oriana-Circular Statistics for Windows, v.4 (Kovach Computing Services, 2011).

    Google Scholar 

  • 50.

    Cole, L. C. The measurement of interspecific association. Ecology 30, 411–424 (1949).

    Article 

    Google Scholar 

  • 51.

    Ferreira, C., Paupério, J. & Alves, P. C. The usefulness of field data and hunting statistics in the assessment of wild rabbit (Oryctolagus cuniculus) conservation status in Portugal. Wildl. Res. 37, 223–229 (2010).

    Article 

    Google Scholar 

  • 52.

    Monterroso, P. et al. Disease-mediated bottom-up regulation: An emergent virus affects a keystone prey, and alters the dynamics of trophic webs. Sci. Rep. 6, 36072 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Signer, J. & Balkenhol, N. Reproducible home ranges (rhr): A new, user-friendly R package for analyses of wildlife telemetry data. Wildl. Soc. Bull. 39, 358–363 (2015).

    Article 

    Google Scholar 

  • 54.

    Calenge, C. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).

    Article 

    Google Scholar 

  • 55.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/ (2020).

  • 56.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 48 (2015).

    Article 

    Google Scholar 

  • 57.

    Barton, K. MuMIn—Multimodel Inference. R package version 1.43.6. http://CRAN.R-Project.org/package=MuMin (2019).

  • 58.

    Weise, F. J. et al. Cheetahs (Acinonyx jubatus) running the gauntlet: An evaluation of translocations into free-range environments in Namibia. PeerJ 3, e1346 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Briers-Louw, W. D., Verschueren, S. & Leslie, A. J. Big cats return to Majete Wildlife Reserve, Malawi: Evaluating reintroduction success. Afr. J. Wildl. Res. 49, 34–50 (2019).

    Google Scholar 

  • 60.

    Yiu, S. et al. Early post-release movement of reintroduced lions (Panthera leo) in Dinokeng Game Reserve, Gauteng, South Africa. Eur. J. Wildl. Res. 61, 861–870 (2015).

    Article 

    Google Scholar 

  • 61.

    Armstrong, D. & Seddon, P. Directions in reintroduction biology. Trends Ecol. Evol. 23, 20–25 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Jule, K. R., Leaver, L. A. & Lea, S. E. G. The effects of captive experience on reintroduction survival in carnivores: A review and analysis. Biol. Conserv. 141, 355–363 (2008).

    Article 

    Google Scholar 

  • 63.

    Reeves, J., Smith, C., Dierenfeld, E. S. & Whitehouse-Tedd, K. Captivity-induced metabolic programming in an endangered felid: Implications for species conservation. Sci. Rep. 10, 3630 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Jackson, C. R., Groom, R. J., Jordan, N. R. & McNutt, J. W. The effect of relatedness and pack size on territory overlap in African wild dogs. Mov. Ecol. 5, 10 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Jiménez, J. et al. Restoring apex predators can reduce mesopredator abundances. Biol. Conserv. 238, 108234 (2019).

    Article 

    Google Scholar 

  • 66.

    Schaub, M., Zink, R., Beissmann, H., Sarrazin, F. & Arlettaz, R. When to end releases in reintroduction programmes: Demographic rates and population viability analysis of Bearded Vultures in the Alps. J. Appl. Ecol. 46, 92–100 (2009).

    Article 

    Google Scholar 

  • 67.

    Bertolero, A., Pretus, J. L. & Oro, D. The importance of including survival release when assessing viability in reptile translocations. Biol. Conserv. 217, 311–320 (2018).

    Article 

    Google Scholar 

  • 68.

    Potts, J. R., Harris, S. & Giuggioli, L. Territorial dynamics and stable home range formation for central place foragers. PLoS One 7, e34033 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 69.

    Gil-Sánchez, J. M. et al. The use of camera trapping for estimating Iberian Lynx (Lynx pardinus) home ranges. Eur. J. Wildl. Res. 57, 1203–1211 (2011).

    Article 

    Google Scholar 

  • 70.

    Spiegel, O., Leu, S. T., Bull, C. M. & Sih, A. What’s your move? Movement as a link between personality and spatial dynamics in animal populations. Ecol. Lett. 20, 3–18 (2017).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 71.

    Bremner-Harrison, S., Prodohl, P. A. & Elwood, R. W. Behavioural trait assessment as a release criterion: Boldness predicts early death in a reintroduction programme of captive bred swift fox (Vulpes velox). Anim. Conserv. 7, 313–320 (2004).

    Article 

    Google Scholar 

  • 72.

    Devineau, O., Shenk, T. M., Doherty, P. F., White, G. C. & Kahn, R. H. Assessing release protocols for Canada Lynx reintroduction in Colorado. J. Wildl. Manag. 75, 623–630 (2011).

    Article 

    Google Scholar 

  • 73.

    Reading, R. P., Miller, B. & Shepherdson, D. The value of enrichment to reintroduction success. Zoo Biol. 32, 332–341 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 74.

    Hardman, B. & Moro, D. Optimising reintroduction success by delayed dispersal: Is the release protocol important for hare-wallabies?. Biol. Conserv. 128, 403–411 (2006).

    Article 

    Google Scholar 

  • 75.

    Sarkar, M. et al. Movement and home range characteristics of reintroduced tiger (Panthera tigris) population in Panna Tiger Reserve, central India. Eur. J. Wildl. Res. 62, 537–547 (2016).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Infrared cameras and artificial intelligence provide insight into boiling

    Engineering seeds to resist drought