in

Exploring physicochemical and cytogenomic diversity of African cowpea and common bean

  • 1.

    Lewis, G. P. Legumes of the World (Royal Botanic Gardens, 2005).

    Google Scholar 

  • 2.

    The Legume Phylogeny Working Group (LPWG). A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66, 44–77 (2017).

    Article 

    Google Scholar 

  • 3.

    Yahara, T. et al. Global legume diversity assessment: Concepts, key indicators, and strategies. Taxon 62, 249–266 (2013).

    Article 

    Google Scholar 

  • 4.

    Odendo, M., Bationo, A. & Kimani, S. Socio-economic contribution of legumes to livelihoods in Sub-Saharan Africa. In Fighting Poverty in Sub-Saharan Africa: The Multiple Roles of Legumes in Integrated Soil Fertility Management (eds Bationo, A. et al.) 27–46 (Springer, 2011).

    Chapter 

    Google Scholar 

  • 5.

    Dakora, F. D. & Keya, S. O. Contribution of legume nitrogen fixation to sustainable agriculture in Sub-Saharan Africa. Soil Biol. Biochem. 29, 809–817 (1997).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Ajeigde, H. A., Singh, B. B. & Osenj, T. O. Cowpea-cereal intercrop productivity in the Sudan savanna zone of Nigeria as affected by planting pattern, crop variety and pest management. Afr. Crop Sci. J. 13, 269–279 (2005).

    Google Scholar 

  • 7.

    Rahmanian, M., Batello, C. & Calles, T. Pulse Crops for Sustainable Farms in Sub-Saharan Africa (FAO, 2018).

    Google Scholar 

  • 8.

    Rawal, V. & Navarro, D. K. The Global Economy of Pulses (FAO, 2017).

    Google Scholar 

  • 9.

    Plants of the World Online. http://powo.science.kew.org (2020).

  • 10.

    Broughton, W. J. et al. Beans (Phaseolus spp.)—Model food legumes. Plant Soil 252, 55–128 (2003).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Delgado-Salinas, A., Bibler, R. & Lavin, M. Phylogeny of the genus Phaseolus (Leguminosae): A recent diversification in an ancient landscape. Syst. Bot. 31, 779–791 (2006).

    Article 

    Google Scholar 

  • 12.

    Greenway, P. J. Origins of some East African food plants: Part V. East Afr. Agric. J. 11, 56–63 (1945).

    Google Scholar 

  • 13.

    Wortmann, C. S. & Allen, D. J. African Bean Production Environments: Their Definition, Characteristics and Constraints. Occasional Publication Series 11 (CIAT, 1994).

    Google Scholar 

  • 14.

    Maxted, N. et al. African Vigna: Systematic and Ecogeographic Studies (International Plant Genetic Resource Institute, 2004).

    Google Scholar 

  • 15.

    Singh, B. B. Cowpea: The Food Legume of the 21st Century (Crop Science Society of America Inc., 2014).

    Book 

    Google Scholar 

  • 16.

    Catarino, S. et al. Conservation priorities for African Vigna species: Unveiling Angola’s diversity hotspots. Glob. Ecol. Conserv. 25, e01415. https://doi.org/10.1016/j.gecco.2020.e01415 (2021).

    Article 

    Google Scholar 

  • 17.

    Vidigal, P., Romeiras, M. M. & Monteiro, F. Crops diversification and the role of orphan legumes to improve the Sub-Saharan Africa farming systems. In Sustainable Crop Production (ed. Hasanuzzaman, M.) (IntechOpen, 2019).

    Google Scholar 

  • 18.

    Maréchal, R. Etude taxonomique d’un groupe complexe d’espèces des genres Phaseolus et Vigna (Papilionaceae) sur la base de données morphologiques et polliniques, traitées par l’analyse informatique. Boissiera 28, 1–273 (1978).

    Google Scholar 

  • 19.

    Peksen, E., Peksen, A. & Gulumser, A. Leaf and stomata characteristics and tolerance of cowpea cultivars to drought stress based on drought tolerance indices under rainfed and irrigated conditions. Int. J. Curr. Microbiol. Appl. Sci. 3, 626–634 (2014).

    CAS 

    Google Scholar 

  • 20.

    Iqbal, A., Khalil, I. A., Ateeq, N. & Khan, M. S. Nutritional quality of important food legumes. Food Chem. 97, 331–335 (2006).

    CAS 
    Article 

    Google Scholar 

  • 21.

    African Orphan Crops Consortium. http://africanorphancrops.org/meet-the-crops/ (2021)

  • 22.

    Boukar, O. et al. Cowpea. In Grain Legumes (ed. de Ron, A. M.) 219–250 (Springer, 2015).

    Chapter 

    Google Scholar 

  • 23.

    Animasaun, D. A., Oyedeji, S., Azeez, Y. K., Mustapha, O. T. & Azeez, M. A. Genetic variability study among ten cultivars of cowpea (Vigna unguiculata L. Walp) using morpho-agronomic traits and nutritional composition. J. Agric. Sci. 10, 119–130 (2015).

    Google Scholar 

  • 24.

    Timko, M. P. & Singh, B. B. Cowpea, a multifunctional legume. In Plant Genetics and Genomics: Crops and Models Vol. 1 (eds Moore, P. H. & Ming, R.) 227–258 (Springer, 2008).

    Google Scholar 

  • 25.

    Wortmann, S. C., Kirkby, A. R., Eledu, A. C. & Allen, J. D. Atlas of Common Bean (Phaseolus vulgaris L.) Production in Africa (International Centre for Tropical Agriculture, 2004).

    Google Scholar 

  • 26.

    Guignard, M. S. et al. Genome size and ploidy influence angiosperm species’ biomass under nitrogen and phosphorus limitation. New Phytol. 210, 1195–1206 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Sheidai, M. et al. Genetic diversity and genome size variability in Linum austriacum (Lineaceae) populations. Biochem. Syst. Ecol. 57, 20–26 (2014).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Kron, P., Suda, J. & Husband, B. C. Applications of flow cytometry to evolutionary and population biology. Annu. Rev. Ecol. Evol. Syst. 38, 847–876 (2007).

    Article 

    Google Scholar 

  • 29.

    Wu, Y. Q. et al. Genetic analyses of Chinese Cynodon accessions by flow cytometry and AFLP markers. Crop Sci. 46, 917–926 (2016).

    Article 

    Google Scholar 

  • 30.

    Parida, A., Raina, S. N. & Narayan, R. K. J. Quantitative DNA variation between and within chromosome complements of Vigna species (Fabaceae). Genetica 82, 125–133 (1990).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Nagl, W. & Treviranus, A. A flow cytometric analysis of the nuclear 2C DNA content in 17 Phaseolus species (53 genotypes). Bot. Acta 108, 403–406 (1995).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Barow, M. & Meister, A. Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant Cell Environ. 26, 571–584 (2003).

    Article 

    Google Scholar 

  • 33.

    Lonardi, S. et al. The genome of cowpea (Vigna unguiculata [L.] Walp.). Plant J. 98, 767–782 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    The IUCN Red List of Threatened Species. Version 2020-2. https://www.iucnredlist.org/ (2020).

  • 35.

    Genesys. Plant Genetic Resources Accession. https://www.genesys-pgr.org/ (2021).

  • 36.

    Pope, G. V. & Polhill, R. M. Flora Zambesiaca, part 5 Vol. 3 (Royal Botanic Gardens, 2001).

    Google Scholar 

  • 37.

    Tomooka, N., Vaughan, D. A., Moss, H. & Maxted, N. The Asian Vigna: Genus Vigna Subgenus Ceratotropis Genetic Resources (Kluwer Academic Publishers, 2002).

    Book 

    Google Scholar 

  • 38.

    Debouck, D. G. Primary diversification of Phaseolus in the Americas: Three centers. Plant Genet. Resour. Newsl. 67, 2–8 (1986).

    Google Scholar 

  • 39.

    Plant Resources of Tropical Africa. https://www.prota4u.org/database/ (2021).

  • 40.

    Linder, H. P. The evolution of African plant diversity. Front. Ecol. Evol. 2, 38. https://doi.org/10.3389/fevo.2014.00038 (2014).

    Article 
    ADS 

    Google Scholar 

  • 41.

    Romeiras, M. M., Figueira, R., Duarte, M. C., Beja, P. & Darbyshire, I. Documenting biogeographical patterns of African timber species using herbarium records: A conservation perspective based on native trees from Angola. PLoS ONE 9, e103403. https://doi.org/10.1371/journal.pone.0103403 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 42.

    Catarino, S. et al. Spatial and temporal trends of burnt area in angola: Implications for natural vegetation and protected area management. Diversity 12, 307. https://doi.org/10.3390/d12080307 (2020).

    Article 

    Google Scholar 

  • 43.

    Catarino, S., Duarte, M. C., Costa, E., Carrero, P. G. & Romeiras, M. M. Conservation and sustainable use of the medicinal Leguminosae plants from Angola. PeerJ 7, e6736. https://doi.org/10.7717/peerj.6736 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Romeiras, M. M. et al. IUCN Red List assessment of the Cape Verde endemic flora: Towards a global strategy for plant conservation in Macaronesia. Bot. J. Linn. Soc. 180, 413–425 (2016).

    Article 

    Google Scholar 

  • 45.

    Gomes, A. M. et al. Drought response of cowpea (Vigna unguiculata (L.) Walp.) landraces at leaf physiological and metabolite profile levels. Environ. Exp. Bot. 175, 104060. https://doi.org/10.1016/j.envexpbot.2020.104060 (2020).

    CAS 
    Article 

    Google Scholar 

  • 46.

    The International Institute of Tropical Agriculture (IITA). https://www.iita.org/ (2021)

  • 47.

    Fatokun, C. et al. Genetic diversity and population structure of a mini-core subset from the world cowpea (Vigna unguiculata (L.) Walp.) germplasm collection. Sci. Rep. 8, 16035. https://doi.org/10.1038/s41598-018-34555-9 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 48.

    Rocha, V., Duarte, M. C., Catarino, S., Duarte, I. & Romeiras, M. M. Cabo Verde’s Poaceae flora: A reservoir of crop wild relatives diversity for crop improvement. Front. Plant Sci. 12, 630217. https://doi.org/10.3389/fpls.2021.630217 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Brilhante, M. et al. Tackling food insecurity in Cabo Verde Islands: The nutritional, agricultural and environmental values of the legume species. Foods 10, 206. https://doi.org/10.3390/foods10020206 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Pasquet, R. S. Wild cowpea (Vigna unguiculata) evolution. In Advances in Legume Systematics 8: Legumes of Economic Importance (eds Pickersgill, B. & Lock, J. M.) 95–100 (Royal Botanic Gardens, 1996).

    Google Scholar 

  • 51.

    Di Bella, G. et al. Mineral composition of some varieties of beans from Mediterranean and Tropical areas. Int. J. Food Sci. Nutr. 67, 239–248 (2016).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 52.

    Gelin, J. R., Forster, S., Grafton, K. F., McClean, P. E. & Rojas-Cifuentes, G. A. Analysis of seed zinc and other minerals in a recombinant inbred population of navy bean (Phaseolus vulgaris L.). Crop Sci. 47, 1361–1366 (2007).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Dakora, F. D. & Belane, A. K. Evaluation of protein and micronutrient levels in edible cowpea (Vigna unguiculata L. Walp) leaves and seeds. Front. Sustain. Food Syst. 3, 70. https://doi.org/10.3389/fsufs.2019.00070 (2019).

    Article 

    Google Scholar 

  • 54.

    Yeken, M. Z., Akpolat, H., Karaköy, T. & Çiftçi, V. Assessment of mineral content variations for biofortification of the bean seed. Int. J. Agric. Sci. 4, 261–269 (2018).

    Google Scholar 

  • 55.

    Gondwe, T. M., Alamu, E. O., Mdziniso, P. & Maziya-Dixon, B. Cowpea (Vigna unguiculata (L.) Walp) for food security: An evaluation of end-user traits of improved varieties in Swaziland. Sci. Rep. 9, 15991. https://doi.org/10.1038/s41598-019-52360-w (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 56.

    Sperotto, R. A., Ricachenevsky, F. K., Williams, L. E., Vasconcelos, M. W. & Menguer, P. K. From soil to seed: Micronutrient movement into and within the plant. Front. Plant Sci. 5, 438. https://doi.org/10.3389/fpls.2014.00438 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Maziya-Dixon, B., Kling, J. G., Menkir, A. & Dixon, A. Genetic variation in total carotene, iron, and zinc contents of maize and cassava genotypes. Food Nutr. Bull. 21, 419–422 (2000).

    Article 

    Google Scholar 

  • 58.

    Shewfelt, R. L. Sources of variation in the nutrient content of agricultural commodities from the farm to the consumer. J. Food Qual. 13, 37–54 (1990).

    Article 

    Google Scholar 

  • 59.

    World Health Organization. The World Health Report 2006: Working Together for Health. https://www.who.int/whr/2006/whr06_en.pdf?ua=1 (2006).

  • 60.

    Gödecke, T., Stein, A. J. & Qaim, M. The global burden of chronic and hidden hunger: Trends and determinants. Glob. Food Sec. 17, 21–29 (2018).

    Article 

    Google Scholar 

  • 61.

    Shankar, A. H. Mineral deficiencies. In Hunter’s Tropical Medicine and Emerging Infectious Diseases (eds Ryan, E. T. et al.) 1048–1054 (Elsevier, 2020).

    Chapter 

    Google Scholar 

  • 62.

    Muthayya, S. et al. The global hidden hunger indices and maps: An advocacy tool for action. PLoS ONE 8, e67860. https://doi.org/10.1371/journal.pone.0067860 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 63.

    Joy, E. J. et al. Dietary mineral supplies in Africa. Physiol. Plant. 151, 208–229 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    World Health Organization. World health statistics 2015. https://apps.who.int/iris/bitstream/handle/10665/170250/9789240694439_eng.pdf;jsessionid=9CFCB446F9217B60415DD216E70F6A49?sequence=1 (2015).

  • 65.

    Muriuki, J. M. et al. Estimating the burden of iron deficiency among African children. BMC Med. 18, 31. https://doi.org/10.1186/s12916-020-1502-7 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Official Journal of the European Union. Regulation (Eu) No 1169/2011 of the European Parliament and of the Council of 25 October 2011. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011R1169&from=EN (2011).

  • 67.

    Nowicka, A. et al. Nuclear DNA content variation within the genus Daucus (Apiaceae) determined by flow cytometry. Sci. Hortic. 209, 132–138 (2016).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Guilengue, N., Alves, S., Talhinhas, P. & Neves-Martins, J. Genetic and genomic diversity in a tarwi (Lupinus mutabilis Sweet) germplasm collection and adaptability to Mediterranean climate conditions. Agronomy 10, 21. https://doi.org/10.3390/agronomy10010021 (2020).

    Article 

    Google Scholar 

  • 69.

    Chable, V. et al. Embedding cultivated diversity in society for agro-ecological transition. Sustainability 12, 784. https://doi.org/10.3390/su12030784 (2020).

    Article 

    Google Scholar 

  • 70.

    Knight, C. A., Molinari, N. A. & Petrov, D. A. The large genome constraint hypothesis: Evolution, ecology and phenotype. Ann. Bot. 95, 177–190 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Pati, K., Zhang, F. & Batley, J. First report of genome size and ploidy of the underutilized leguminous tuber crop Yam Bean (Pachyrhizus erosus and P. tuberosus) by flow cytometry. Plant Genet. Resour. 17, 456–459 (2019).

    CAS 
    Article 

    Google Scholar 

  • 72.

    Sliwinska, E. Flow cytometry—A modern method for exploring genome size and nuclear DNA synthesis in horticultural and medicinal plant species. Folia Hortic. 30, 103–128 (2018).

    Article 

    Google Scholar 

  • 73.

    Veselý, P., Bureš, P. & Šmarda, P. Nutrient reserves may allow for genome size increase: Evidence from comparison of geophytes and their sister non-geophytic relatives. Ann. Bot. 112, 1193–1200 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 74.

    African Plant Database. http://www.ville-ge.ch/musinfo/bd/cjb/africa/index. (2021).

  • 75.

    Hyde, M. A., Wursten, B. T., Ballings, P. & Coates Palgrave, M. Flora of Botswana. https://www.botswanaflora.com (2021).

  • 76.

    Hyde, M. A., Wursten, B. T., Ballings, P. & Coates Palgrave, M. Flora of Malawi. http://www.malawiflora.com (2021).

  • 77.

    Hyde, M. A., Wursten, B. T., Ballings, P. & Coates Palgrave, M. Flora of Mozambique. http://www.mozambiqueflora.com (2021)

  • 78.

    Bingham, M. G., Willemen, A., Wursten, B. T., Ballings, P. & Hyde, M. A. Flora of Zambia http://www.zambiaflora.com (2021).

  • 79.

    Hyde, M. A., Wursten, B. T., Ballings, P. & Coates Palgrave, M. Flora of Zimbabwe. http://www.zimbabweflora.co.zw (2021).

  • 80.

    International Legume Database & Information Service. https://ildis.org/LegumeWeb (2020).

  • 81.

    Exell, A.W. & Fernandes, A. Conspectus florae angolensis. Vol. 3, No. 2. Leguminosae (Papilionoideae: Hedysareae-Sophoreae) (Junta de Investigações do Ultramar, 1966)

  • 82.

    Pasquet, R. S. Notes on the genus Vigna (Leguminosae-Papilionoideae). Kew Bull 56, 223–227 (2001).

    Article 

    Google Scholar 

  • 83.

    van Zonneveld, M. et al. Mapping patterns of abiotic and biotic stress resilience uncovers conservation gaps and breeding potential of Vigna wild relatives. Sci. Rep. 10, 2111. https://doi.org/10.1038/s41598-020-58646-8 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 84.

    Global Biodiversity Information Facility. https://www.gbif.org/ (2021).

  • 85.

    GBIF Occurrence Download—Vigna. https://doi.org/10.15468/dl.bsjsk5 (2021).

  • 86.

    GBIF Occurrence Download—Phaseolus. https://doi.org/10.15468/dl.kjw72 (2021).

  • 87.

    QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2021).

  • 88.

    Doležel, J., Sgorbati, S. & Lucretti, S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol. Plant. 85, 625–631 (1992).

    Article 

    Google Scholar 

  • 89.

    Loureiro, J., Rodriguez, E., Doležel, J. & Santos, C. Two new nuclear isolation buffers for plant DNA flow cytometry: A test with 37 species. Ann. Bot. 100, 875–888 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 90.

    Doležel, J. & Bartoš, J. Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot. 95, 99–110 (2005).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 91.

    Doležel, J., Bartoš, J., Voglmayr, H. & Greilhuber, J. Nuclear DNA content and genome size of trout and human. Cytometry 51, 127–128 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 92.

    Jelihovschi, E. G., Faria, J. C. & Allaman, I. B. ScottKnott: A package for performing the Scott-Knott clustering algorithm in R. TEMA 15, 3–17 (2014).

    MathSciNet 
    Article 

    Google Scholar 

  • 93.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

    MATH 
    Book 

    Google Scholar 

  • 94.

    R Core Team. R: A language and environment for statistical computing https://www.R-project.org/ (R Foundation for Statistical Computing, 2020).


  • Source: Ecology - nature.com

    Helarchaeota and co-occurring sulfate-reducing bacteria in subseafloor sediments from the Costa Rica Margin

    Canopy distribution and microclimate preferences of sterile and wild Queensland fruit flies