in

Exposure to foreign gut microbiota can facilitate rapid dietary shifts

  • 1.

    Shiels, A. B. et al. Dietary niche differentiation among three species of invasive rodents (Rattus rattus, R. exulans, Mus musculus). Biol. Invasions 15, 1037–1048 (2013).

    Article 

    Google Scholar 

  • 2.

    Gulka, J. et al. Dietary niche shifts of multiple marine predators under varying prey availability on the northeast Newfoundland coast. Front. Mar. Sci. 4, 324 (2017).

    Article 

    Google Scholar 

  • 3.

    Davey, C. M., Chamberlain, D. E., Newson, S. E., Noble, D. G. & Johnston, A. Rise of the generalists: Evidence for climate driven homogenization in avian communities. Glob. Ecol. Biogeogr. 21, 568–578 (2012).

    Article 

    Google Scholar 

  • 4.

    Wilby, A. & Thomas, M. B. Natural enemy diversity and pest control: Patterns of pest emergence with agricultural intensification. Ecol. Lett. 5, 353–360 (2002).

    Article 

    Google Scholar 

  • 5.

    Ducatez, S., Sol, D., Sayol, F. & Lefebvre, L. Behavioural plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evol. 4, 788–793 (2020).

    Article 

    Google Scholar 

  • 6.

    Gould, J. Description of new species of finches collected by Darwin in the Galapagos. In Vol. 5, pp. 4–7 (1837).

  • 7.

    Jung, K. & Kalko, E. K. Where forest meets urbanization: Foraging plasticity of aerial insectivorous bats in an anthropogenically altered environment. J. Mammal. 91, 144–153 (2010).

    Article 

    Google Scholar 

  • 8.

    Manenti, R., Denoël, M. & Ficetola, G. F. Foraging plasticity favours adaptation to new habitats in fire salamanders. Anim. Behav. 86, 375–382 (2013).

    Article 

    Google Scholar 

  • 9.

    Amato, K. R. et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 576–587 (2019).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Schlomann, B. H. & Parthasarathy, R. Timescales of gut microbiome dynamics. Curr. Opin. Microbiol. 50, 56–63 (2019).

    Article 

    Google Scholar 

  • 11.

    Legal, L., Chappe, B. & Jallon, J. M. Molecular basis of Morinda citrifolia (L.): Toxicity on drosophila. J. Chem. Ecol. 20, 1931–1943 (1994).

    CAS 
    Article 

    Google Scholar 

  • 12.

    R’kha, S., Capy, P. & David, J. R. Host-plant specialization in the Drosophila melanogaster species complex: A physiological, behavioral, and genetical analysis. Proc. Natl. Acad. Sci. 88, 1835–1839 (1991).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Chandler, J. A., Lang, J. M., Bhatnagar, S., Eisen, J. A. & Kopp, A. Bacterial communities of diverse Drosophila species: Ecological context of a host–microbe model system. PLoS Genet. 7, e1002272 (2011).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Storelli, G. et al. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 14, 403–414 (2011).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Ryu, J.-H. et al. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319, 777–782 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 16.

    Nishida, A. H. & Ochman, H. Rates of gut microbiome divergence in mammals. Mol. Ecol. 27, 1884–1897 (2018).

    Article 

    Google Scholar 

  • 17.

    Ochman, H. et al. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol. 8, e1000546 (2010).

    Article 

    Google Scholar 

  • 18.

    Gomez, A. et al. Plasticity in the human gut microbiome defies evolutionary constraints. MSphere 4, e00271-e319 (2019).

    Article 

    Google Scholar 

  • 19.

    Chen, C.-Y., Chen, P.-C., Weng, F.C.-H., Shaw, G.T.-W. & Wang, D. Habitat and indigenous gut microbes contribute to the plasticity of gut microbiome in oriental river prawn during rapid environmental change. PLoS ONE 12, e0181427 (2017).

    Article 

    Google Scholar 

  • 20.

    Vijendravarma, R. K., Narasimha, S. & Kawecki, T. J. Predatory cannibalism in Drosophila melanogaster larvae. Nat. Commun. 4, 1–8 (2013).

    Article 

    Google Scholar 

  • 21.

    Fisher, A. M. et al. Relatedness modulates density-dependent cannibalism rates in Drosophila. In review.

  • 22.

    Amlou, M., Moreteau, B. & David, J. Genetic analysis of Drosophila sechellia specialization: Oviposition behavior toward the major aliphatic acids of its host plant. Behav. Genet. 28, 455–464 (1998).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Early, A. M., Shanmugarajah, N., Buchon, N. & Clark, A. G. Drosophila genotype influences commensal bacterial levels. PLoS ONE 12, e0170332 (2017).

    Article 

    Google Scholar 

  • 24.

    Alcock, J., Maley, C. C. & Aktipis, C. A. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays 36, 940–949 (2014).

    Article 

    Google Scholar 

  • 25.

    Lizé, A. & Lewis, Z. The microbiome and host behaviour. In Microbiomes of Soils, Plants and Animals: An Integrated Approach (Eds. Antwis, R. E. et al.) 98–121 (Cambridge University Press, 2020).

  • 26.

    Wong, A.C.-N. et al. Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in Drosophila. Curr. Biol. 27, 2397–2404 (2017).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Hulme, P. E. Climate change and biological invasions: Evidence, expectations, and response options. Biol. Rev. 92, 1297–1313 (2017).

    Article 

    Google Scholar 

  • 28.

    Han, B. A., Kramer, A. M. & Drake, J. M. Global patterns of zoonotic disease in mammals. Trends Parasitol. 32, 565–577 (2016).

    Article 

    Google Scholar 

  • 29.

    Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature 584, 398–402 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 30.

    Bertani, G. Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J. Bacteriol. 186, 595–600 (2004).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Atlas, R. M. Handbook of microbiological media (CRC Press, Boca Raton, 2010).

    Book 

    Google Scholar 

  • 32.

    Heys, C. et al. The effect of gut microbiota elimination in Drosophila melanogaster: A how-to guide for host–microbiota studies. Ecol. Evol. 8, 4150–4161 (2018).

    Article 

    Google Scholar 

  • 33.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Dekker, T., Ibba, I., Siju, K., Stensmyr, M. C. & Hansson, B. S. Olfactory shifts parallel superspecialism for toxic fruit in Drosophila melanogaster sibling, D. sechellia. Curr. Biol. 16, 101–109 (2006).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Arnold, T. W. Uninformative parameters and model selection using Akaike’s information criterion. J. Wildl. Manag. 74, 1175–1178 (2010).

    Article 

    Google Scholar 

  • 36.

    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2019).

  • 37.

    Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. The lme4 package. R Package Version 2, 74 (2007).

    Google Scholar 

  • 38.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Smarter regulation of global shipping emissions could improve air quality and health outcomes

    Resource–diversity relationships in bacterial communities reflect the network structure of microbial metabolism