in

Eye fluke infection changes diet composition in juvenile European perch (Perca fluviatilis)

  • 1.

    Minchella, D. J. & Scott, M. E. Parasitism: a cryptic determinant of animal community structure. Trends Ecol. Evol. 6(8), 250–254. https://doi.org/10.1016/0169-5347(91)90071-5 (1991).

    CAS  Article  PubMed  Google Scholar 

  • 2.

    Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. & Jetz, W. Homage to Linnaeus: how many parasites? How many host?. Proc. Natl. Acad. Sci. USA 105, 11482–11489. https://doi.org/10.1073/pnas.0803232105 (2008).

    ADS  Article  PubMed  Google Scholar 

  • 3.

    Hatcher, M. J. & Dunn, A. M. Parasites in ecological communities: from interactions to ecosystems. https://doi.org/10.1017/CBO9780511987359 (Cambridge University Press, Cambridge, 2011).

    Google Scholar 

  • 4.

    Sures, B., Nachev, M., Pahl, M., Grabner, D. & Selbach, C. Parasites as drivers of key processes in aquatic ecosystems: facts and future directions. Exp. Parasitol. 180, 141–147. https://doi.org/10.1016/j.exppara.2017.03.011 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 5.

    Marcogliese, D. J. & Cone, D. K. Food webs: a plea for parasites. Trends Ecol. Evol. 12, 320–325. https://doi.org/10.1016/S0169-5347(97)01080-X (1997).

    CAS  Article  PubMed  Google Scholar 

  • 6.

    Thompson, R. M., Mouritsen, K. N. & Poulin, R. Importance of parasites and their life cycle characteristics in determining the structure of a large marine food web. J. Anim. Ecol. 74, 77–85. https://doi.org/10.1111/j.1365-2656.2004.00899.x (2005).

    Article  Google Scholar 

  • 7.

    Hernandez, A. D. & Sukhdeo, M. V. K. Parasites alter the topology stream food web across seasons. Oecologia 156, 613–624. https://doi.org/10.1007/s00442-008-0999-9 (2008).

    ADS  Article  PubMed  Google Scholar 

  • 8.

    Dick, J. T. A. et al. Parasitism may enhance rather than reduce the predatory impact of an invader. Biol. Lett. 6, 636–638. https://doi.org/10.1098/rsbl.2010.0171 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • 9.

    Buck, J. C. Indirect effects explain the role of parasites in ecosystems. Trends Parasitol. 35, 835–847. https://doi.org/10.1016/j.pt.2019.07.007 (2019).

    Article  PubMed  Google Scholar 

  • 10.

    Sabadel, A. J. M., Stumbo, A. D. & MacLeod, C. D. Stable-isotope analysis: a neglected tool for placing parasites in food webs. J. Helminthol. 93, 1–7. https://doi.org/10.1017/S0022149X17001201 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 11.

    Barber, I., Hoare, D. & Krause, J. Effects of parasites on fish behaviour: an evolutionary perspective and review. Rev. Fish Biol. Fish. 10, 131–165. https://doi.org/10.1023/A:1016658224470 (2000).

    Article  Google Scholar 

  • 12.

    Barber, I. & Wright, H.A. Effects of parasites on fish behaviour: interactions with host physiology in Fish physiology (eds. Katherine, R.W.W., Sloman, A. & Sigal, B.) 109–149. https://doi.org/10.1016/S1546-5098(05)24004-9 (Academic Press, 2005)

  • 13.

    Hughes, D. P., Brodeur, J. & Thomas, F. Host Manipulation by Parasites (Oxford University Press, Oxford, 2012).

    Google Scholar 

  • 14.

    Moore, J. Parasites and Behaviour of Animals (Oxford University Press, Oxford, 2002).

    Google Scholar 

  • 15.

    Shariff, M., Richards, R. H. & Sommerville, C. The histopathology of acute and chronic infections of rainbow trout Salmo gairdneri Richardson with eye flukes, Diplostomum spp. J. Fish. Dis. 3, 455–465. https://doi.org/10.1111/j.1365-2761.1980.tb00432.x (1980).

    Article  Google Scholar 

  • 16.

    Stumbo, A. D. & Poulin, R. Possible mechanism of host manipulation resulting from a diel behaviour pattern of eye-dwelling parasites?. Parasitology 143, 1261–1267. https://doi.org/10.1017/S0031182016000810 (2016).

    Article  PubMed  Google Scholar 

  • 17.

    Poulin, R. & Cribb, T. H. Trematode life cycles: short is sweet?. Trends Parasitol. 18, 176–183. https://doi.org/10.1016/S1471-4922(02)02262-6 (2002).

    Article  PubMed  Google Scholar 

  • 18.

    Cribb, T. H., Bray, R. A., Olson, P. D. & Littlewood, D. T. J. Life cycle evolution in the Digenea: a new perspective from phylogeny. Adv. Parasitol. 54, 197–254. https://doi.org/10.1016/S0065-308X(03)54004-0 (2003).

    Article  PubMed  Google Scholar 

  • 19.

    Streilein, J. W. Oculae immune privilege: the eye takes a dim but practical view of immunity and inflammation. J. Leukoc. Biol. 74, 179–185. https://doi.org/10.1189/jlb.1102574 (2003).

    CAS  Article  PubMed  Google Scholar 

  • 20.

    Crowden, A. E. & Broom, D. M. Effects of the eyefluke, Diplostomum spathaceum, on the behaviour of dace (Leuciscus leuciscus). Anim. Behav. 28, 287–294. https://doi.org/10.1016/S0003-3472(80)80031-5 (1980).

    Article  Google Scholar 

  • 21.

    Seppälä, O., Karvonen, A. & Valtonen, E. T. Manipulation of fish host by eye flukes in relation to cataract formation and parasite infectivity. Anim. Behav. 70, 889–894. https://doi.org/10.1016/j.anbehav.2005.01.020 (2005).

    Article  Google Scholar 

  • 22.

    Seppälä, O., Karvonen, A. & Valtonen, E. T. Shoaling behaviour of fish under parasitism and predation risk. Anim. Behav. 75, 145–150. https://doi.org/10.1016/j.anbehav.2007.04.022 (2008).

    Article  Google Scholar 

  • 23.

    Vivas Muñoz, J. C., Bierbach, D. & Knopf, K. Eye fluke (Tylodelphys clavata) infection impairs visual ability and hampers foraging success in European perch. Parasitol. Res. 118, 2531–2541. https://doi.org/10.1007/s00436-019-06389-5 (2019).

    Article  PubMed  Google Scholar 

  • 24.

    Vivas Muñoz, J. C., Staaks, G. & Knopf, K. The eye fluke Tylodelphys clavata affects prey detection and intraspecific competition of European perch (Perca fluviatilis). Parasitol. Res. 116, 2561–2567. https://doi.org/10.1007/s00436-017-5564-1 (2017).

    Article  PubMed  Google Scholar 

  • 25.

    Bergman, E. Foraging abilities and niche breadths of two percids, Perca fluviatilis and Gymnocephalus cernua, under different environmental conditions. J. Anim. Ecol. 57, 443–453. https://doi.org/10.2307/4916 (1988).

    Article  Google Scholar 

  • 26.

    Diehl, S. Foraging efficiency of three freshwater fishes: effects of structural complexity and light. Oikos 53, 207–214. https://doi.org/10.2307/3566064 (1988).

    Article  Google Scholar 

  • 27.

    Craig, J. F. Percid Fishes: Systematics, Ecology and Exploitation (Blackwell Science, Hoboken, 2000). https://doi.org/10.1002/9780470696033.

    Google Scholar 

  • 28.

    Kennedy, C. R. & Burrough, R. Parasites of trout and perch in Malham Tarn. Fld. Stud. 4, 617–629 (1978).

    Google Scholar 

  • 29.

    Kennedy, C. R. Long term studies on the population biology of two species of eye fluke, Diplostomurn gasterostei and Tylodelphys clavata (Digenea: Diplostomatidae), concurrently infecting the eyes of perch, Perca fluviatilis. J. Fish Biol. 19, 221–236. https://doi.org/10.1111/j.1095-8649.1981.tb05826.x (1981).

    Article  Google Scholar 

  • 30.

    Kennedy, C. R. Interspecific interactions between larval digeneans in the eyes of perch, Perca fluviatilis. Parasitology 122, S13–S22. https://doi.org/10.1017/S0031182000016851 (2001).

    Article  PubMed  Google Scholar 

  • 31.

    Valtonen, E. T., Holmes, J. C., Aronen, J. & Rautalahti, I. Parasite communities as indicators of recovery from pollution: parasites of roach (Rutilus rutilus) and perch (Perca fluviatilis) in Central Finland. Parasitology 126, S43–S52. https://doi.org/10.1017/S0031182003003494 (2003).

    CAS  Article  PubMed  Google Scholar 

  • 32.

    Behrmann-Godel, J. Parasite identification, succession and infection pathways in perch fry (Perca fluviatilis): new insights through a combined morphological and genetic approach. Parasitology 140, 509–520. https://doi.org/10.1017/S0031182012001989 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 33.

    Soylu, E. Metazoan parasites of perch Perca fluviatilis L. from Lake Sığırcı, Ipsala. Turkey. Pak. J. Zool. 45, 47–52 (2013).

    Google Scholar 

  • 34.

    Vivas Muñoz, J.C. Tylodelphys clavata in perch (Perca fluviatilis): spatial heterogeneity, impact on feeding behaviour and intraspecific competition. Master Thesis. Humboldt-Universität zu Berlin (2014)

  • 35.

    Hjelm, J., Svanbäck, R., Byström, P., Persson, L. & Wahlström, E. Diet dependent body morphology and ontogenetic reaction norms in Eurasian perch. Oikos 95, 311–323. https://doi.org/10.1034/j.1600-0706.2001.950213.x (2001).

    Article  Google Scholar 

  • 36.

    Svanbäck, R. & Eklöv, P. Effects of habitat and food resources on morphology and ontogenetic growth trajectories in perch. Oecologia 131, 61–70. https://doi.org/10.1007/s00442-001-0861-9 (2002).

    ADS  Article  PubMed  Google Scholar 

  • 37.

    Svanbäck, R. & Eklöv, P. Morphology dependent foraging efficiency in perch: a trade-off for ecological specialization?. Oikos 102, 273–284. https://doi.org/10.1034/j.1600-0706.2003.12657.x (2003).

    Article  Google Scholar 

  • 38.

    Svanbäck, R. & Eklöv, P. Morphology in perch affects habitat specific feeding efficiency. Funct. Ecol. 18, 503–510. https://doi.org/10.1111/j.0269-8463.2004.00858.x (2004).

    Article  Google Scholar 

  • 39.

    Quevedo, M. & Olsson, J. The effect of small-scale resource origin on trophic position estimates in Perca fluviatilis. J. Fish Biol. 69, 141–150. https://doi.org/10.1111/j.1095-8649.2006.01072.x (2006).

    Article  Google Scholar 

  • 40.

    Quevedo, M., Svanbäck, R. & Eklöv, P. Intrapopulation niche partitioning in a generalist predator limits food web connectivity. Ecology 90, 2263–2274. https://doi.org/10.1890/07-1580.1 (2009).

    Article  PubMed  Google Scholar 

  • 41.

    Frankiewicz, P. & Wojtal-Frankiewicz, A. Two different feeding tactics of young-of-the-year perch, Perca fluviatilis L., inhabiting the littoral zone of the lowland Sulejow Reservoir (Central Poland). Ecohydrol. Hydrobiol. 12, 35–41. https://doi.org/10.2478/v10104-012-0001-7 (2012).

    Article  Google Scholar 

  • 42.

    Persson, L. Effects of reduced interspecific competition on resource utilization in perch (Perca fluviatilis). Ecology 67, 355–364. https://doi.org/10.2307/1938578 (1986).

    Article  Google Scholar 

  • 43.

    Persson, L. & Greenberg, L. Interspecific and intraspecific size class competition affecting resource use and growth of perch, Perca fluviatilis. Oikos 59, 97–106. https://doi.org/10.2307/3545128 (1990).

    Article  Google Scholar 

  • 44.

    Diehl, S. Effects of habitat structure on resource availability, diet and growth of benthivorous perch, Perca fluviatilis. Oikos 67, 403–414. https://doi.org/10.2307/3545353 (1993).

    Article  Google Scholar 

  • 45.

    Svanbäck, R. & Persson, L. Individual diet specialization, niche width and population dynamics: implications for trophic polymorphisms. J. Anim. Ecol. 73, 973–982. https://doi.org/10.1111/j.0021-8790.2004.00868.x (2004).

    Article  Google Scholar 

  • 46.

    Eklöv, P. & Svanbäck, R. Predation risk influences adaptive morphological variation in fish populations. Am. Nat. 167, 440–452. https://doi.org/10.1086/499544 (2006).

    Article  PubMed  Google Scholar 

  • 47.

    Svanbäck, R. & Bolnick, D. I. Intraspecific competition drives increased resource use diversity within a natural population. Proc. R. Soc. B Biol. Sci. 274, 839–844. https://doi.org/10.1098/rspb.2006.0198 (2007).

    Article  Google Scholar 

  • 48.

    Sharma, C. M. & Borgstrøm, R. Shift in density, habitat use, and diet of perch and roach: An effect of changed predation pressure after manipulation of pike. Fish. Res. 91, 98–106. https://doi.org/10.1016/j.fishres.2007.11.011 (2008).

    Article  Google Scholar 

  • 49.

    Svanbäck, R., Eklöv, P., Fransson, R. & Holmgren, K. Intraspecific competition drives multiple species resource polymorphism in fish communities. Oikos 117, 114–124. https://doi.org/10.1111/j.2007.0030-1299.16267.x (2008).

    Article  Google Scholar 

  • 50.

    Okun, N. & Mehner, T. Distribution and feeding of juvenile fish on invertebrates in littoral reed (Phragmites) stands. Ecol. Freshw. Fish 14, 139–149. https://doi.org/10.1111/j.1600-0633.2005.00087.x (2005).

    Article  Google Scholar 

  • 51.

    Hyslop, E. J. Stomach content analysis: a review of methods and their application. J. Fish Biol. 17, 411–429. https://doi.org/10.1111/j.1095-8649.1980.tb02775.x (1980).

    Article  Google Scholar 

  • 52.

    Peterson, B. J. & Fry, B. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18, 293–320. https://doi.org/10.1146/annurev.ecolsys.18.1.293 (1987).

    Article  Google Scholar 

  • 53.

    Beaudoin, C. P., Tonn, W. M., Prepas, E. E. & Wassenaar, L. I. Individual specialization and trophic adaptability of northern pike (Esox lucius): an isotope and dietary analysis. Oecologia 120, 386–396. https://doi.org/10.1007/s004420050871 (1999).

    ADS  Article  PubMed  Google Scholar 

  • 54.

    Bolnick, D. I. et al. The ecology of individuals: incidence and implications of individual specialization. Am. Nat. 161, 1–28. https://doi.org/10.2307/3078879 (2003).

    MathSciNet  Article  PubMed  Google Scholar 

  • 55.

    Bearhop, S. et al. Stable isotopes indicate sex-specific and long-term individual foraging specialization in diving seabirds. Mar. Ecol. Prog. Ser. 311, 157–164. https://doi.org/10.3354/meps311157 (2006).

    ADS  Article  Google Scholar 

  • 56.

    Phillips, D. L. & Gregg, J. W. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136, 261–269. https://doi.org/10.1007/s00442-003-1218-3 (2003).

    ADS  Article  PubMed  Google Scholar 

  • 57.

    Parnell, A. C., Inger, R., Bearhop, S. & Jackson, A. L. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5, e9672. https://doi.org/10.1371/journal.pone.0009672 (2010).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 58.

    Parnell, A. C. et al. Bayesian stable isotope mixing models. Environmetrics 24, 387–399. https://doi.org/10.1002/env.2221 (2013).

    MathSciNet  Article  Google Scholar 

  • 59.

    Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology? Trends Ecol. Evol. 26, 183–192. https://doi.org/10.1016/j.tree.2011.01.009 (2011).

    Article  Google Scholar 

  • 60.

    Voutilainen, A., Figueiredo, K. & Huuskonen, H. Effects of the eye fluke Diplostomum spathaceum on the energetics and feeding of Arctic charr Salvelinus alpinus. J. Fish Biol. 73, 2228–2237. https://doi.org/10.1111/j.1095-8649.2008.02050.x (2008).

    Article  Google Scholar 

  • 61.

    Padrós, F., Knuden, R. & Blasco-Costa, I. Histopathological characterisation of retinal lesions associated to Diplostomum species (Platyhelminthes: Trematoda) infection in polymorphic Arctic charr Salvelinus alpinus. Int. J. Parasito. 7, 68–74. https://doi.org/10.1016/j.ijppaw.2018.01.007 (2018).

    Article  Google Scholar 

  • 62.

    Ubels, J. L. et al. Impairment of retinal function in yellow perch (Perca flavescens) by Diplostomum baeri metacercariae. Int. J. Parasitol. Parasites Wildl. 7, 171–179. https://doi.org/10.1016/j.ijppaw.2018.05.001 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 63.

    Lemly, A. D. & Esch, G. W. Effects of the trematode Uvulifer ambloplitis on juvenile bluegill sunfish, Lepomis macrochirus: ecological implications. J. Parasit. 70, 475–492. https://doi.org/10.2307/3281395 (1984).

    Article  Google Scholar 

  • 64.

    Santoro, M. et al. Parasitic infection by larval helminths in Antarctic fishes: pathological changes and impact on the host body condition index. Dis. Aquat. Org. 105, 139–148. https://doi.org/10.3354/dao02626 (2013).

    CAS  Article  Google Scholar 

  • 65.

    Owen, S. F., Barber, I. & Hart, P. J. B. Low level infection by eye fluke, Diplostomum spp., affects the vision of three-spined sticklebacks, Gasterosteus aculeatus. J. Fish Biol. 42, 803–806. https://doi.org/10.1111/j.1095-8649.1993.tb00387.x (1993).

    Article  Google Scholar 

  • 66.

    Pennycuick, L. Quantitative effects of three species of parasites on a population of three-spined sticklebacks, Gasterosteus aculeatus L. J. Zool. 165, 143–162. https://doi.org/10.1111/j.1469-7998.1971.tb02179.x (1971).

    Article  Google Scholar 

  • 67.

    Marcogliese, D. J. et al. Spatial and temporal variations in abundance of Diplostomum spp. in walleye (Stizostedion vitreum) and white sucker (Catostomus commersoni) from the St. Lawrence River: importance the importance of gulls and fish stocks. Can. J. Zool. 79, 355–369. https://doi.org/10.1139/z00-209 (2001).

    Article  Google Scholar 

  • 68.

    Dörücü, M., Dildiz, N. & Grabbe, M. C. J. Occurrence and effects of Diplostomum sp. infection in eyes of Acanthobrama marmid in Keban Dam Lake, Elazığ, Turkey. Turk. J. Vet. Anim. Sci. 26, 239–243 (2002).

    Google Scholar 

  • 69.

    Machado, P. M., Takemoto, R. M. & Pavanelli, G. C. Diplostomum (Austrodiplostomum) compactum (Lutz, 1928) (Platyhelminthes, Digenea) metacercariae in fish from the floodplain of the Upper Paraná River. Brazil. Parasitol. Res. 97, 436–444. https://doi.org/10.1007/s00436-005-1483-7 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 70.

    Weatherley, A. H. Growth and Ecology of Fish Populations (Academic Press, London, 1972).

    Google Scholar 

  • 71.

    Lagrue, C. & Poulin, R. Measuring fish body condition with or without parasites: does it matter?. J. Fish Biol. 87, 836–847. https://doi.org/10.1111/jfb.12749 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 72.

    Craig, J. F. A study of the food and feeding of perch, Perca fluviatilis L., inWindermere. Freshw Biol 8, 59–68. https://doi.org/10.1111/j.1365-2427.1978.tb01426.x (1978).

    Article  Google Scholar 

  • 73.

    Guma’a, S.A. The food and feeding habits of young perch, Perca fluviatilis, in Windermere. Freshw Biol 8, 177–187. https://doi.org/10.1111/j.1365-2427.1978.tb01439.x (1978).

    Article  Google Scholar 

  • 74.

    Wang, N. & Eckmann, R. Distribution of perch (Perca fluviatilis L.) during their first year of life in Lake Constance. Hydrobiologia 277, 135–143. https://doi.org/10.1007/BF00007295 (1994).

    Article  Google Scholar 

  • 75.

    Imbock, F., Appenzeller, A. & Eckmann, R. Diel and seasonal distribution of perch in Lake Constance: a hydroacoustic study and in situ observations. J. Fish Biol. 49, 1–13. https://doi.org/10.1111/j.1095-8649.1996.tb00001.x (1996).

    Article  Google Scholar 

  • 76.

    Hejlm, J., Persson, L. & Christensen, B. Growth, morphological variation and ontogenetic niche shifts in perch (Perca fluviatilis) in relation to resource availability. Oceologia 122, 190–199. https://doi.org/10.1007/PL00008846 (2000).

    ADS  Article  Google Scholar 

  • 77.

    Horppila, J. et al. Seasonal changes in the diets and relative abundances of perch and roach in the littoral and pelagic zones of a large lake. J. Fish Biol. 56, 51–72. https://doi.org/10.1111/j.1095-8649.2000.tb02086.x (1999).

    Article  Google Scholar 

  • 78.

    Allen, K. R. The food and migration of the perch (Perca fluviatilis) in Windermere. J Anim Ecol 4, 264–273. https://doi.org/10.2307/1016 (1935).

    Article  Google Scholar 

  • 79.

    Mustamäki, N., Cederberg, T. & Mattila, J. Diet, stable isotopes and morphology of Eurasian perch (Perca fluviatilis) in littoral and pelagic habitats in the northern Baltic Proper. Environ. Biol. Fish 97, 675–689. https://doi.org/10.1007/s10641-013-0169-8 (2014).

    Article  Google Scholar 

  • 80.

    Bootsma, H. A., Hecky, R. E., Hesslein, R. H. & Turner, G. F. Food partitioning among Lake Malawi nearshore fishes as revealed by stable isotope analyses. Ecology 77, 1286–1290. https://doi.org/10.2307/2265598 (1996).

    Article  Google Scholar 

  • 81.

    Jakobsen, P. J., Johnsen, G. H. & Larsson, P. Effects of predation risk and parasitism on the feeding ecology, habitat use, and abundance of lacustrine threespine stickleback (Gasterosteus aculeatus). Can. J. Fish. Aq. Sci. 45, 426–431. https://doi.org/10.1139/f88-051 (1988).

    Article  Google Scholar 

  • 82.

    Milinski, M. Parasites determine a predator’s optimal feeding strategy. Behav. Ecol. Sociobiol. 15, 35–37. https://doi.org/10.1007/BF00310212 (1984).

    Article  Google Scholar 

  • 83.

    Barber, I. & Huntingford, F. A. The effect of Schistocephalus solidus (Cestoda: Pseudophyllidea) on the foraging and shoaling behaviour of three-spined sticklebacks, Gasterosteus aculeatus. Behaviour 132, 1223–1240. https://doi.org/10.1163/156853995X00540 (1995).

    Article  Google Scholar 

  • 84.

    Van den Brink, F. W. B., Van der Velde, G. & Bij de Vaate, A. Amphipod invasion on the Rhine. Nature 352, 576. https://doi.org/10.1038/352576a0 (1991).

    ADS  Article  Google Scholar 

  • 85.

    den Hartog, C., Van den Brink, F. W. B. & Van der Velde, G. Why was the invasion of the river Rhine by Corophium curvispinum and Corbicula species so successful?. J. Nat. Hist. 26, 1121–1129. https://doi.org/10.1080/00222939200770651 (1992).

    Article  Google Scholar 

  • 86.

    Dick, J. T. A. & Platvoet, D. Invading predatory crustacean Dikerogammarus villosus eliminates both native and exotic species. Proc. R. Soc. Lond. B Biol. Sci. 267, 977–983. https://doi.org/10.1098/rspb.2000.1099 (2000).

    CAS  Article  Google Scholar 

  • 87.

    Platvoet, D., Van Der Velde, G., Dick, J. T. A. & Li, S. Q. Flexible omnivory in Dikerogammarus villosus (Sowinsky, 1894) (Amphipoda) – Amphipod Pilot Species Project (AMPIS) Report 5. Crustaceana 82, 703–720. https://doi.org/10.1163/156854009X423201 (2009).

    Article  Google Scholar 

  • 88.

    Richter, L. et al. The very hungry amphipod: the invasive Dikerogammarus villosus shows high consumption rates for two food sources and independent of predator cues. Biol. Invasions 20, 1321–1335. https://doi.org/10.1007/s10530-017-1629-4 (2018).

    Article  Google Scholar 

  • 89.

    Worischka, S. et al. Food consumption of the invasive amphipod Dikerogammarus villosus in field mesocosms and its effects on leaf decomposition and periphyton. Aquat. Invasions 13, 261–275. https://doi.org/10.3391/ai.2018.13.2.07 (2018).

    Article  Google Scholar 

  • 90.

    Berg, M.B. Laval food and feeding behaviour in The Chironomidae (eds. Armitage, P.D., Cranston, P.S. & Pinder, L.C.V.) 136–168. https://doi.org/10.1007/978-94-011-0715-0_7 (Springer, 1995)

  • 91.

    Henriques-Oliveira, A. L., Nessimian, J. L. & Dorvillé, L. F. M. Feeding habits of chironomid larvae (Insecta: Diptera) from a stream in the Floresta da Tijuca, Rio de janeiro, Brazil. Braz. J. Biol. 63, 269–281. https://doi.org/10.1590/S1519-69842003000200012 (2003).

    CAS  Article  PubMed  Google Scholar 

  • 92.

    Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718. https://doi.org/10.2307/3071875 (2002).

    Article  Google Scholar 

  • 93.

    Syrovátka, V. The predatory behaviour of Monopelopia tenuicalcar (Kieffer, 1918) larvae in a laboratory experiment. J. Limnol. 77, 88–94. https://doi.org/10.4081/jlimnol.2018.1792 (2018).

    Article  Google Scholar 

  • 94.

    Bernot, R. J. & Lamberti, G. A. Indirect effects of a parasite on a benthic community: an experiment with trematodes, snails and periphyton. Freshw. Biol. 53, 322–329. https://doi.org/10.1111/j.1365-2427.2007.01896.x (2008).

    Article  Google Scholar 

  • 95.

    Seppälä, O., Karvonen, A. & Valtonen, E. T. Parasite-induced change in host behaviour and susceptibility to predation in an eye fluke-fish interaction. Anim. Behav. 68, 257–263. https://doi.org/10.1016/j.anbehav.2003.10.021 (2004).

    Article  Google Scholar 

  • 96.

    Gopko, M., Mikheev, V. N. & Taskinen, J. Deterioration of basic components of the anti-predator behavior in fish harboring eye fluke larvae. Behav. Ecol. Sociobiol. 71, 68. https://doi.org/10.1007/s00265-017-2300-x (2017).

    Article  Google Scholar 

  • 97.

    Flink, H., Behrens, J. W. & Svensson, P. A. Consequences of eye fluke infection on anti-predator behaviours in invasive round gobies in Kalmar Sound. Parasitol. Res. 116, 1653–1663. https://doi.org/10.1007/s00436-017-5439-5 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 98.

    Scheffer, M., Hosper, S. H., Meijer, M. L., Moss, B. & Jeppesen, E. Alternative equilibria in shallow lakes. Trends Evol. Ecol. 8, 275–279. https://doi.org/10.1016/0169-5347(93)90254-M (1993).

    CAS  Article  Google Scholar 

  • 99.

    Driescher, E., Behrendt, H., Schellenberger, G. & Stellmacher, R. Lake Müggelsee and its environment – natural conditions and anthropogenic impacts. Int. Revue. ges. Hydrobiol. 78, 327–343. https://doi.org/10.1002/iroh.19930780303 (1993).

    CAS  Article  Google Scholar 

  • 100.

    Kozicka, J. & Niewiadomska, K. Studies on the biology and taxonomy of trematodesof the genus Tylodelphys Diesing, 1850 (Diplostomatidae). Acta Parasitol. Pol. 8, 379–400 (1960).

    Google Scholar 

  • 101.

    Dönges, J. Entwicklungs- und Lebensdauer von Metacercarien. Z. Parasitenk. 31, 340–366. https://doi.org/10.1007/BF00259732 (1969).

    Article  PubMed  Google Scholar 

  • 102.

    Kennedy, C. R. Long-term stability in the population levels of the eyefluke Tylodelphys podicipina(Digenea: Diplostomatidae) in perch. J. Fish Biol. 31, 571–581. https://doi.org/10.1111/j.1095-8649.1987.tb05259.x (1987).

    Article  Google Scholar 

  • 103.

    Höglund, J. & Thulin, J. Identification of Diplostomumspp. in the retina of perch Perca fluviatilisand the lens of roach Rutilus rutilusfrom the Baltic Sea – an experimental study. Syst. Parasitol. 21, 1–19. https://doi.org/10.1007/BF00009910 (1992).

    Article  Google Scholar 

  • 104.

    Niewiadomska, K. Rasoẑyty ryb Polski Prywry – Digenea (Polskie Towarzystwo Parazytologiczne, Warsaw, Poland, 2003).

    Google Scholar 

  • 105.

    Blasco-Costa, I. et al. Fish pathogens near the Arctic Circle: molecular, morphological and ecological evidence for unexpected diversity of Diplostomum (Digenea: diplostomidae) in Iceland. Int. J. Parasitol. 44, 703–715. https://doi.org/10.1016/j.ijpara.2014.04.009 (2014).

    Article  PubMed  Google Scholar 

  • 106.

    Bush, A. O., Lafferty, K. D., Lotz, J. M. & Shostak, A. W. Parasitology meets ecology on its own terms: Margolis et al revisited. J. Parasitol. 83, 575–583. https://doi.org/10.2307/3284227 (1997).

    CAS  Article  PubMed  Google Scholar 

  • 107.

    Nash, R. D. M., Valencia, A. H. & Geffen, A. J. The origin of Fulton’s condition factor: setting the record straight. Fisheries 31, 236–238 (2006).

    Google Scholar 

  • 108.

    Persson, L., Andersson, J., Wahlström, E. & Eklöv, P. Size–specific interactions in lake systems: predator gape limitation and prey growth rate and mortality. Ecology 77, 900–911. https://doi.org/10.2307/2265510 (1996).

    Article  Google Scholar 

  • 109.

    Pinder, L. C. V. Biology of freshwater Chironomidae. Ann. Rev. Entomol. 31, 1–23. https://doi.org/10.1146/annurev.en.31.010186.000245 (1986).

    Article  Google Scholar 

  • 110.

    Linzmaier, S. M., Twardochleb, L. A., Olden, J. D., Mehner, T. & Arlinghaus, R. Size-dependent foraging niches of European Perch Perca fluviatilis (Linnaeus, 1758) and North American Yellow Perch Perca flavescens (Mitchill, 1814). Environ. Biol. Fish 101, 23–37. https://doi.org/10.1007/s10641-017-0678-y (2018).

    Article  Google Scholar 

  • 111.

    Nachev, M. et al. Understanding trophic interactions in host–parasite associations using stable isotopes of carbon and nitrogen. Parasit Vectors 10, 90. https://doi.org/10.1186/s13071-017-2030-y (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 112.

    Werner, R. A. & Brand, W. A. Referencing strategies and techniques in stable isotope ratio analysis. Rapid. Commun. Mass Spectrom. 15, 501–519. https://doi.org/10.1002/rcm.258 (2001).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 113.

    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506. https://doi.org/10.1016/0016-7037(78)90199-0 (1978).

    ADS  CAS  Article  Google Scholar 

  • 114.

    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45, 341–351. https://doi.org/10.1016/0016-7037(81)90244-1 (1981).

    ADS  CAS  Article  Google Scholar 

  • 115.

    Fry, B. & Sherr, E. B. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib. Mar. Sci. 27, 13–47 (1984).

    CAS  Google Scholar 

  • 116.

    Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140. https://doi.org/10.1016/0016-7037(84)90204-7 (1984).

    ADS  CAS  Article  Google Scholar 

  • 117.

    Vander Zanden, M. J. & Rasmussen, J. B. Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 46, 2061–2066. https://doi.org/10.4319/lo.2001.46.8.2061 (2001).

    ADS  CAS  Article  Google Scholar 

  • 118.

    Elsdon, T. S., Ayvazian, S., McMahon, K. W. & Thorrold, S. R. Experimental evaluation of stable isotope fractionation in fish muscle and otoliths. Mar. Ecol. Prog. Ser. 408, 195–205. https://doi.org/10.3354/meps08518 (2010).

    ADS  CAS  Article  Google Scholar 

  • 119.

    Parnell, A. & Jackson, A. SIAR: Stable isotope analysis in R. R package ver. 4.2. http://CRAN.R-project.org/package=siar (2013)

  • 120.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2018)


  • Source: Ecology - nature.com

    George Shultz PhD ’49, renowned statesman and former professor, dies at 100

    Descriptive multi-agent epidemiology via molecular screening on Atlantic salmon farms in the northeast Pacific Ocean