SERNAPESCA (Servicio Nacional de Pesca y Acuicultura). Informe Sanitario de Salmonicultura. http://www.sernapesca.cl/sites/default/files/informe_sanitario_salmonicultura_en_centros_marinos_2018_final.pdf (2018).
Bang Jensen, B., Qviller, L. & Toft, N. Spatio-temporal variations in mortality during the seawater production phase of Atlantic salmon (Salmo salar) in Norway. J. Fish Dis. 43, 445–457 (2020).
Google Scholar
Moriarty, M. et al. Modelling temperature and fish biomass data to predict annual Scottish farmed salmon, Salmo salar L., losses: Development of an early warning tool. Prev. Vet. Med. 178, 104985. https://doi.org/10.1016/j.prevetmed.2020.104985 (2020).
Google Scholar
Sommerset, I. et al. The Health Situation in Norwegian Aquaculture 2019. https://www.vetinst.no/rapporter-og-publikasjoner/rapporter/2020/fiskehelserapporten-2019 (2020).
Grefsrud, E. S. et al. Risikorapport norsk fiskeoppdrett 2021—risikovurdering. https://www.hi.no/hi/nettrapporter/rapport-fra-havforskningen-2021-8 (2021).
Overton, K. et al. Salmon lice treatments and salmon mortality in Norwegian aquaculture: A review. Rev. Aquac. 11, 1398–1417 (2019).
Google Scholar
Soares, S., Green, D. M., Turnbull, J. F., Crumlish, M. & Murray, A. G. A baseline method for benchmarking mortality losses in Atlantic salmon (Salmo salar) production. Aquaculture 314, 7–12 (2011).
Google Scholar
Santurtun, E., Broom, D. & Phillips, C. A review of factors affecting the welfare of Atlantic salmon (Salmo salar). Anim. Welf. 27, 193–204 (2018).
Google Scholar
Ellis, T., Berrill, I., Lines, J., Turnbull, J. F. & Knowles, T. G. Mortality and fish welfare. Fish Physiol. Biochem. 38, 189–199 (2012).
Google Scholar
Crockford, T., Menzies, F., McLoughlin, M., Wheatley, S. & Goodall, E. Aspects of the epizootiology of pancreas disease in farmed Atlantic salmon Salmo salar in Ireland. Dis. Aquat. Organ. 36, 113–119 (1999).
Google Scholar
Stormoen, M., Kristoffersen, A. B. & Jansen, P. A. Mortality related to pancreas disease in Norwegian farmed salmonid fish, Salmo salar L. and Oncorhynchus mykiss (Walbaum). J. Fish Dis. 36, 639–645 (2013).
Google Scholar
Taksdal, T. et al. Mortality and weight loss of Atlantic salmon, Salmon salar L., experimentally infected with salmonid alphavirus subtype 2 and subtype 3 isolates from Norway. J. Fish Dis. 38, 1047–1061 (2015).
Google Scholar
Hammell, K. L. & Dohoo, I. R. Mortality patterns in infectious salmon anaemia virus outbreaks in New Brunswick, Canada. J. Fish Dis. 28, 639–650 (2005).
Google Scholar
Glover, K. A. et al. Size-dependent susceptibility to infectious salmon anemia virus (ISAV) in Atlantic salmon (Salmo salar L.) of farm, hybrid and wild parentage. Aquaculture 254, 82–91 (2006).
Google Scholar
Roberts, R. J. & Pearson, M. D. Infectious pancreatic necrosis in Atlantic salmon, Salmo salar L. J. Fish Dis. 28, 383–390 (2005).
Google Scholar
Bang Jensen, B. & Kristoffersen, A. Risk factors for outbreaks of infectious pancreatic necrosis (IPN) and associated mortality in Norwegian salmonid farming. Dis. Aquat. Organ. 114, 177–187 (2015).
Google Scholar
Brun, E., Poppe, T., Skrudland, A. & Jarp, J. Cardiomyopathy syndrome in farmed Atlantic salmon Salmo salar: Occurrence and direct financial losses for Norwegian aquaculture. Dis. Aquat. Organ. 56, 241–247 (2003).
Google Scholar
Bang Jensen, B., Brun, E., Fineid, B., Larssen, R. & Kristoffersen, A. Risk factors for cardiomyopathy syndrome (CMS) in Norwegian salmon farming. Dis. Aquat. Organ. 107, 141–150 (2013).
Google Scholar
Løvoll, M. et al. Atlantic salmon bath challenged with Moritella viscosa—Pathogen invasion and host response. Fish Shellfish Immunol. 26, 877–884 (2009).
Google Scholar
Delghandi, M. R., El-Matbouli, M. & Menanteau-Ledouble, S. Renibacterium salmoninarum—The causative agent of bacterial kidney disease in salmonid fish. Pathogens 9, 845. https://doi.org/10.3390/pathogens9100845 (2020).
Google Scholar
Lhorente, J. P., Gallardo, J. A., Villanueva, B., Carabaño, M. J. & Neira, R. Disease resistance in Atlantic Salmon (Salmo salar): Coinfection of the intracellular bacterial pathogen Piscirickettsia salmonis and the Sea Louse Caligus rogercresseyi. PLoS ONE 9, e95397. https://doi.org/10.1371/journal.pone.0095397 (2014).
Google Scholar
Kristoffersen, A. B. et al. Quantitative risk assessment of salmon louse-induced mortality of seaward-migrating post-smolt Atlantic salmon. Epidemics 23, 19–33 (2018).
Google Scholar
Vollset, K. W. Parasite induced mortality is context dependent in Atlantic salmon: Insights from an individual-based model. Sci. Rep. 9, 17377. https://doi.org/10.1038/s41598-019-53871-2 (2019).
Google Scholar
Taylor, R. S., Kube, P. D., Muller, W. J. & Elliott, N. G. Genetic variation of gross gill pathology and survival of Atlantic salmon (Salmo salar L.) during natural amoebic gill disease challenge. Aquaculture 294, 172–179 (2009).
Google Scholar
Carvalho, L. A. et al. Impact of co-infection with Lepeophtheirus salmonis and Moritella viscosa on inflammatory and immune responses of Atlantic salmon (Salmo salar). J. Fish Dis. 43, 459–473 (2020).
Google Scholar
Barker, S. E. et al. Sea lice, Lepeophtheirus salmonis (Krøyer 1837), infected Atlantic salmon (Salmo salar L.) are more susceptible to infectious salmon anemia virus. PLoS ONE 14, e0209178. https://doi.org/10.1371/journal.pone.0209178 (2019).
Google Scholar
Staurnes, M., Sigholt, T., Åsgård, T. & Baeverfjord, G. Effects of a temperature shift on seawater challenge test performance in Atlantic salmon (Salmo salar) smolt. Aquaculture 201, 153–159 (2001).
Google Scholar
Ytrestøyl, T. et al. Performance and welfare of Atlantic salmon, <scp> Salmo salar </scp> L. post-smolts in recirculating aquaculture systems: Importance of salinity and water velocity. J. World Aquac. Soc. 51, 373–392 (2020).
Google Scholar
Montes, R. M., Rojas, X., Artacho, P., Tello, A. & Quiñones, R. A. Quantifying harmful algal bloom thresholds for farmed salmon in southern Chile. Harmful Algae 77, 55–65 (2018).
Google Scholar
León-Muñoz, J., Urbina, M. A., Garreaud, R. & Iriarte, J. L. Hydroclimatic conditions trigger record harmful algal bloom in western Patagonia (summer 2016). Sci. Rep. 8, 1330. https://doi.org/10.1038/s41598-018-19461-4 (2018).
Google Scholar
Groner, M. L., McEwan, G. F., Rees, E. E., Gettinby, G. & Revie, C. W. Quantifying the influence of salinity and temperature on the population dynamics of a marine ectoparasite. Can. J. Fish. Aquat. Sci. 73, 1281–1291 (2016).
Google Scholar
Sievers, M., Oppedal, F., Ditria, E. & Wright, D. W. The effectiveness of hyposaline treatments against host-attached salmon lice. Sci. Rep. 9, 6976. https://doi.org/10.1038/s41598-019-43533-8 (2019).
Google Scholar
Tunsjø, H. S. et al. Adaptive response to environmental changes in the fish pathogen Moritella viscosa. Res. Microbiol. 158, 244–250 (2007).
Google Scholar
Guomundsdóttir, S. et al. Measures applied to control Renibacterium salmoninarum infection in Atlantic salmon: A retrospective study of two sea ranches in Iceland. Aquaculture 186, 193–203 (2000).
Google Scholar
Jansen, M. D. et al. Salmonid alphavirus (SAV) and pancreas disease (PD) in Atlantic salmon, Salmo salar L., in freshwater and seawater sites in Norway from 2006 to 2008. J. Fish Dis. 33, 391–402 (2010).
Google Scholar
Jensen, B. B., Kristoffersen, A. B., Myr, C. & Brun, E. Cohort study of effect of vaccination on pancreas disease in Norwegian salmon aquaculture. Dis. Aquat. Organ. 102, 23–31 (2012).
Google Scholar
Karlsen, C., Thorarinsson, R., Wallace, C., Salonius, K. & Midtlyng, P. J. Atlantic salmon winter-ulcer disease: Combining mortality and skin ulcer development as clinical efficacy criteria against Moritella viscosa infection. Aquaculture 473, 538–544 (2017).
Google Scholar
Jansen, P. A. et al. Sea lice as a density-dependent constraint to salmonid farming. Proc. R. Soc. B Biol. Sci. 279, 2330–2338 (2012).
Google Scholar
Overton, K., Samsing, F., Oppedal, F., Stien, L. H. & Dempster, T. Lowering treatment temperature reduces salmon mortality: A new way to treat with hydrogen peroxide in aquaculture. Pest Manag. Sci. 74, 535–540 (2018).
Google Scholar
Helgesen, K. O., Romstad, H., Aaen, S. M. & Horsberg, T. E. First report of reduced sensitivity towards hydrogen peroxide found in the salmon louse Lepeophtheirus salmonis in Norway. Aquac. Rep. 1, 37–42 (2015).
Google Scholar
Walde, C. S., Bang Jensen, B., Pettersen, J. M. & Stormoen, M. Estimating cage level mortality distributions following different delousing treatments of Atlantic salmon (Salmo salar) in Norway. J. Fish Dis. 44, jfd.13348. https://doi.org/10.1111/jfd.13348 (2021).
Google Scholar
Aaen, S. M., Helgesen, K. O., Bakke, M. J., Kaur, K. & Horsberg, T. E. Drug resistance in sea lice: A threat to salmonid aquaculture. Trends Parasitol. 31, 72–81 (2015).
Google Scholar
Gismervik, K., Nielsen, K. V., Lind, M. B. & Viljugrein, H. Mekanisk avlusing med FLS-avlusersystem—dokumentasjon av fiskevelferd og effekt mot lus. Veterinærinstituttets rapportserie 6–2017. See https://www.vetinst.no/rapporter-og-publikasjoner/rapporter/2017/mekanisk-avlusing-dokumentasjon-av-fiskevelferd-og-effekt-mot-lus (2017).
Grøntvedt, R. N. et al. Thermal de-licing of salmonid fish—Documentation of fish welfare and effect. Norwegian Veterinary Institute`s Report series 13–2015. https://www.vetinst.no/rapporter-og-publikasjoner/rapporter/2015/thermal-de-licing-of-salmonid-fish-documentation-of-fish-welfare-and-effect (2015).
Gismervik, K. et al. Thermal injuries in Atlantic salmon in a pilot laboratory trial. Vet. Anim. Sci. 8, 100081. https://doi.org/10.1016/j.vas.2019.100081 (2019).
Google Scholar
Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686. https://doi.org/10.21105/joss.01686 (2019).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
Auguie B. gridExtra: Miscellaneous functions for “grid” graphics. R package version 2.3. https://CRAN.R-project.org/package=gridExtra (2017).
Salama, N. K. G., Murray, A. G., Christie, A. J. & Wallace, I. S. Using fish mortality data to assess reporting thresholds as a tool for detection of potential disease concerns in the Scottish farmed salmon industry. Aquaculture 450, 283–288 (2016).
Google Scholar
Aunsmo, A. et al. Methods for investigating patterns of mortality and quantifying cause-specific mortality in sea-farmed Atlantic salmon Salmo salar. Dis. Aquat. Organ. 81, 99–107 (2008).
Google Scholar
Usher, M. L., Talbot, C. & Eddy, F. B. Effects of transfer to seawater on growth and feeding in Atlantic salmon smolts (Salmo salar L.). Aquaculture 94, 309–326 (1991).
Google Scholar
Johansson, L.-H., Timmerhaus, G., Afanasyev, S., Jørgensen, S. M. & Krasnov, A. Smoltification and seawater transfer of Atlantic salmon (Salmo salar L.) is associated with systemic repression of the immune transcriptome. Fish Shellfish Immunol. 58, 33–41 (2016).
Google Scholar
Ellis, T., Turnbull, J. F., Knowles, T. G., Lines, J. A. & Auchterlonie, N. A. Trends during development of Scottish salmon farming: An example of sustainable intensification?. Aquaculture 458, 82–99 (2016).
Google Scholar
Kristensen, T. et al. Effects of production intensity and production strategies in commercial Atlantic salmon smolt (Salmo salar L.) production on subsequent performance in the early sea stage. Fish Physiol. Biochem. 38, 273–282 (2012).
Google Scholar
Handeland, S. O., Björnsson, B. T., Arnesen, A. M. & Stefansson, S. O. Seawater adaptation and growth of post-smolt Atlantic salmon (Salmo salar) of wild and farmed strains. Aquaculture 220, 367–384 (2003).
Google Scholar
Bjørndal, T. & Tusvik, A. Economic analysis of on-growing of salmon post-smolts. Aquac. Econ. Manag. 24, 355–386 (2020).
Google Scholar
Bang Jensen, B., Mårtensson, A. & Kristoffersen, A. B. Estimating risk factors for the daily risk of developing clinical cardiomyopathy syndrome (CMS) on a fishgroup level. Prev. Vet. Med. 175, 104852. https://doi.org/10.1016/j.prevetmed.2019.104852 (2020).
Google Scholar
Iversen, M. et al. Stress responses in Atlantic salmon (Salmo salar L.) smolts during commercial well boat transports, and effects on survival after transfer to sea. Aquaculture 243, 373–382 (2005).
Google Scholar
Intorre, L. Safety of azamethiphos in eel, seabass and trout. Pharmacol. Res. 49, 171–176 (2004).
Google Scholar
Olsvik, P. A., Ørnsrud, R., Lunestad, B. T., Steine, N. & Fredriksen, B. N. Transcriptional responses in Atlantic salmon (Salmo salar) exposed to deltamethrin, alone or in combination with azamethiphos. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 162, 23–33 (2014).
Google Scholar
Johnson, S., Constible, J. & Richard, J. Laboratory investigations on the efficacy of hydrogen peroxide against the salmon louse Lepeophtheirus salmonis and its lexicological and histopathological effects on Atlantic salmon Salmo salar and Chinook salmon Oncorhynchus tshawytscha. Dis. Aquat. Organ. 17, 197–204 (1993).
Google Scholar
Nilsson, J. et al. Sudden exposure to warm water causes instant behavioural responses indicative of nociception or pain in Atlantic salmon. Vet. Anim. Sci. 8, 100076. https://doi.org/10.1016/j.vas.2019.100076 (2019).
Google Scholar
Stien, L. H., Lind, M. B., Oppedal, F., Wright, D. W. & Seternes, T. Skirts on salmon production cages reduced salmon lice infestations without affecting fish welfare. Aquaculture 490, 281–287 (2018).
Google Scholar
Barrett, L. T., Oppedal, F., Robinson, N. & Dempster, T. Prevention not cure: A review of methods to avoid sea lice infestations in salmon aquaculture. Rev. Aquac. 12, 2527–2543 (2020).
Google Scholar
Overton, K., Barrett, L. T., Oppedal, F., Kristiansen, T. S. & Dempster, T. Sea lice removal by cleaner fish in salmon aquaculture: A review of the evidence base. Aquac. Environ. Interact. 12, 31–44 (2020).
Google Scholar
Tully, O., Daly, P., Lysaght, S., Deady, S. & Varian, S. J. A. Use of cleaner-wrasse (Centrolabrus exoletus (L.) and Ctenolabrus rupestris (L.)) to control infestations of Caligus elongatus Nordmann on farmed Atlantic salmon. Aquaculture 142, 11–24 (1996).
Google Scholar
Imsland, A. K. D. et al. It works! Lumpfish can significantly lower sea lice infestation in large-scale salmon farming. Biol. Open 7, bio036301. https://doi.org/10.1242/bio.036301 (2018).
Google Scholar
Erkinharju, T., Dalmo, R. A., Hansen, M. & Seternes, T. Cleaner fish in aquaculture: Review on diseases and vaccination. Rev. Aquac. 13, 189–237 (2021).
Google Scholar
Elliott, J. M. & Elliott, J. A. Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: Predicting the effects of climate change. J. Fish Biol. 77, 1793–1817 (2010).
Google Scholar
Finstad, T. & Sigholt, B. Effect of low temperature on seawater tolerance in Atlantic salmon (Salmo salar) smolts. Aquaculture 84, 167–172 (1990).
Google Scholar
Grefsrud, E. S. et al. Risikorapport norsk fiskeoppdrett 2018. https://www.hi.no/resources/publikasjoner/risikorapport-norsk-fiskeoppdrett/2018/risikorapport_2018.pdf (2018).
Hvas, M., Folkedal, O. & Oppedal, F. Fish welfare in offshore salmon aquaculture. Rev. Aquac. 13, 836–852 (2021).
Google Scholar
Dórea, F. C. & Vial, F. Animal health syndromic surveillance: A systematic literature review of the progress in the last 5 years (2011–2016). Vet. Med. Res. Rep. 7, 157–170 (2016).
Fernández-Fontelo, A. et al. Enhancing the monitoring of fallen stock at different hierarchical administrative levels: An illustration on dairy cattle from regions with distinct husbandry, demographical and climate traits. BMC Vet. Res. 16, 110 (2020).
Google Scholar
Samsing, F., Johnsen, I., Dempster, T., Oppedal, F. & Treml, E. A. Network analysis reveals strong seasonality in the dispersal of a marine parasite and identifies areas for coordinated management. Landsc. Ecol. 32, 1953–1967 (2017).
Google Scholar
Samsing, F., Johnsen, I., Treml, E. A. & Dempster, T. Identifying ‘firebreaks’ to fragment dispersal networks of a marine parasite. Int. J. Parasitol. 49, 277–286 (2019).
Google Scholar
Myksvoll, M. S. et al. Evaluation of a national operational salmon lice monitoring system—From physics to fish. PLoS ONE 13, e0201338. https://doi.org/10.1371/journal.pone.0201338 (2018).
Google Scholar
Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439–446 (2018).
Google Scholar
Tennekes, M. tmap: Thematic maps in R. J. Stat. Softw. 84, 1–39 (2018).
Google Scholar
NFD (Nærings- og fiskeridepartementet). Forskrift om bekjempelse av lakselus i akvakulturanlegg. Lovdata. https://lovdata.no/dokument/SF/forskrift/2012-12-05-1140 (2012).
NFD (Nærings- og fiskeridepartementet). Forskrift om bekjempelse av lakselus i akvakulturanlegg. Lovdata. https://lovdata.no/dokument/LTI/forskrift/2012-12-05-1140 (2012).
Asplin, L., Albretsen, J., Johnsen, I. A. & Sandvik, A. D. The hydrodynamic foundation for salmon lice dispersion modeling along the Norwegian coast. Ocean Dyn. 70, 1151–1167 (2020).
Google Scholar
Pierce, D. ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files. CRAN. https://cran.r-project.org/web/packages/ncdf4/ncdf4.pdf (2019).
Dohoo I., Martin W. & Stryhn H. Veterinary Epidemiologic Research (2nd edn) Charlottetown, Prince Edward Island (VER Inc., 2009).
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
Google Scholar
Lüdecke, D., Makowski, D., Waggoner, P. & Patil, I. performance: Assessment of regression models performance. CRAN. https://easystats.github.io/performance (2020).
Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. CRAN. https://cran.r-project.org/web/packages/DHARMa/DHARMa.pdf (2020).
Source: Ecology - nature.com