in

Factors associated with baseline mortality in Norwegian Atlantic salmon farming

  • 1.

    SERNAPESCA (Servicio Nacional de Pesca y Acuicultura). Informe Sanitario de Salmonicultura. http://www.sernapesca.cl/sites/default/files/informe_sanitario_salmonicultura_en_centros_marinos_2018_final.pdf (2018).

  • 2.

    Bang Jensen, B., Qviller, L. & Toft, N. Spatio-temporal variations in mortality during the seawater production phase of Atlantic salmon (Salmo salar) in Norway. J. Fish Dis. 43, 445–457 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Moriarty, M. et al. Modelling temperature and fish biomass data to predict annual Scottish farmed salmon, Salmo salar L., losses: Development of an early warning tool. Prev. Vet. Med. 178, 104985. https://doi.org/10.1016/j.prevetmed.2020.104985 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Sommerset, I. et al. The Health Situation in Norwegian Aquaculture 2019. https://www.vetinst.no/rapporter-og-publikasjoner/rapporter/2020/fiskehelserapporten-2019 (2020).

  • 5.

    Grefsrud, E. S. et al. Risikorapport norsk fiskeoppdrett 2021—risikovurdering. https://www.hi.no/hi/nettrapporter/rapport-fra-havforskningen-2021-8 (2021).

  • 6.

    Overton, K. et al. Salmon lice treatments and salmon mortality in Norwegian aquaculture: A review. Rev. Aquac. 11, 1398–1417 (2019).

    Article 

    Google Scholar 

  • 7.

    Soares, S., Green, D. M., Turnbull, J. F., Crumlish, M. & Murray, A. G. A baseline method for benchmarking mortality losses in Atlantic salmon (Salmo salar) production. Aquaculture 314, 7–12 (2011).

    Article 

    Google Scholar 

  • 8.

    Santurtun, E., Broom, D. & Phillips, C. A review of factors affecting the welfare of Atlantic salmon (Salmo salar). Anim. Welf. 27, 193–204 (2018).

    Article 

    Google Scholar 

  • 9.

    Ellis, T., Berrill, I., Lines, J., Turnbull, J. F. & Knowles, T. G. Mortality and fish welfare. Fish Physiol. Biochem. 38, 189–199 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Crockford, T., Menzies, F., McLoughlin, M., Wheatley, S. & Goodall, E. Aspects of the epizootiology of pancreas disease in farmed Atlantic salmon Salmo salar in Ireland. Dis. Aquat. Organ. 36, 113–119 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Stormoen, M., Kristoffersen, A. B. & Jansen, P. A. Mortality related to pancreas disease in Norwegian farmed salmonid fish, Salmo salar L. and Oncorhynchus mykiss (Walbaum). J. Fish Dis. 36, 639–645 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Taksdal, T. et al. Mortality and weight loss of Atlantic salmon, Salmon salar L., experimentally infected with salmonid alphavirus subtype 2 and subtype 3 isolates from Norway. J. Fish Dis. 38, 1047–1061 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Hammell, K. L. & Dohoo, I. R. Mortality patterns in infectious salmon anaemia virus outbreaks in New Brunswick, Canada. J. Fish Dis. 28, 639–650 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Glover, K. A. et al. Size-dependent susceptibility to infectious salmon anemia virus (ISAV) in Atlantic salmon (Salmo salar L.) of farm, hybrid and wild parentage. Aquaculture 254, 82–91 (2006).

    Article 

    Google Scholar 

  • 15.

    Roberts, R. J. & Pearson, M. D. Infectious pancreatic necrosis in Atlantic salmon, Salmo salar L. J. Fish Dis. 28, 383–390 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Bang Jensen, B. & Kristoffersen, A. Risk factors for outbreaks of infectious pancreatic necrosis (IPN) and associated mortality in Norwegian salmonid farming. Dis. Aquat. Organ. 114, 177–187 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Brun, E., Poppe, T., Skrudland, A. & Jarp, J. Cardiomyopathy syndrome in farmed Atlantic salmon Salmo salar: Occurrence and direct financial losses for Norwegian aquaculture. Dis. Aquat. Organ. 56, 241–247 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Bang Jensen, B., Brun, E., Fineid, B., Larssen, R. & Kristoffersen, A. Risk factors for cardiomyopathy syndrome (CMS) in Norwegian salmon farming. Dis. Aquat. Organ. 107, 141–150 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Løvoll, M. et al. Atlantic salmon bath challenged with Moritella viscosa—Pathogen invasion and host response. Fish Shellfish Immunol. 26, 877–884 (2009).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 20.

    Delghandi, M. R., El-Matbouli, M. & Menanteau-Ledouble, S. Renibacterium salmoninarum—The causative agent of bacterial kidney disease in salmonid fish. Pathogens 9, 845. https://doi.org/10.3390/pathogens9100845 (2020).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Lhorente, J. P., Gallardo, J. A., Villanueva, B., Carabaño, M. J. & Neira, R. Disease resistance in Atlantic Salmon (Salmo salar): Coinfection of the intracellular bacterial pathogen Piscirickettsia salmonis and the Sea Louse Caligus rogercresseyi. PLoS ONE 9, e95397. https://doi.org/10.1371/journal.pone.0095397 (2014).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Kristoffersen, A. B. et al. Quantitative risk assessment of salmon louse-induced mortality of seaward-migrating post-smolt Atlantic salmon. Epidemics 23, 19–33 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Vollset, K. W. Parasite induced mortality is context dependent in Atlantic salmon: Insights from an individual-based model. Sci. Rep. 9, 17377. https://doi.org/10.1038/s41598-019-53871-2 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Taylor, R. S., Kube, P. D., Muller, W. J. & Elliott, N. G. Genetic variation of gross gill pathology and survival of Atlantic salmon (Salmo salar L.) during natural amoebic gill disease challenge. Aquaculture 294, 172–179 (2009).

    Article 

    Google Scholar 

  • 25.

    Carvalho, L. A. et al. Impact of co-infection with Lepeophtheirus salmonis and Moritella viscosa on inflammatory and immune responses of Atlantic salmon (Salmo salar). J. Fish Dis. 43, 459–473 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Barker, S. E. et al. Sea lice, Lepeophtheirus salmonis (Krøyer 1837), infected Atlantic salmon (Salmo salar L.) are more susceptible to infectious salmon anemia virus. PLoS ONE 14, e0209178. https://doi.org/10.1371/journal.pone.0209178 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Staurnes, M., Sigholt, T., Åsgård, T. & Baeverfjord, G. Effects of a temperature shift on seawater challenge test performance in Atlantic salmon (Salmo salar) smolt. Aquaculture 201, 153–159 (2001).

    Article 

    Google Scholar 

  • 28.

    Ytrestøyl, T. et al. Performance and welfare of Atlantic salmon, <scp> Salmo salar </scp> L. post-smolts in recirculating aquaculture systems: Importance of salinity and water velocity. J. World Aquac. Soc. 51, 373–392 (2020).

    Article 
    CAS 

    Google Scholar 

  • 29.

    Montes, R. M., Rojas, X., Artacho, P., Tello, A. & Quiñones, R. A. Quantifying harmful algal bloom thresholds for farmed salmon in southern Chile. Harmful Algae 77, 55–65 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    León-Muñoz, J., Urbina, M. A., Garreaud, R. & Iriarte, J. L. Hydroclimatic conditions trigger record harmful algal bloom in western Patagonia (summer 2016). Sci. Rep. 8, 1330. https://doi.org/10.1038/s41598-018-19461-4 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Groner, M. L., McEwan, G. F., Rees, E. E., Gettinby, G. & Revie, C. W. Quantifying the influence of salinity and temperature on the population dynamics of a marine ectoparasite. Can. J. Fish. Aquat. Sci. 73, 1281–1291 (2016).

    Article 

    Google Scholar 

  • 32.

    Sievers, M., Oppedal, F., Ditria, E. & Wright, D. W. The effectiveness of hyposaline treatments against host-attached salmon lice. Sci. Rep. 9, 6976. https://doi.org/10.1038/s41598-019-43533-8 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Tunsjø, H. S. et al. Adaptive response to environmental changes in the fish pathogen Moritella viscosa. Res. Microbiol. 158, 244–250 (2007).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 34.

    Guomundsdóttir, S. et al. Measures applied to control Renibacterium salmoninarum infection in Atlantic salmon: A retrospective study of two sea ranches in Iceland. Aquaculture 186, 193–203 (2000).

    Article 

    Google Scholar 

  • 35.

    Jansen, M. D. et al. Salmonid alphavirus (SAV) and pancreas disease (PD) in Atlantic salmon, Salmo salar L., in freshwater and seawater sites in Norway from 2006 to 2008. J. Fish Dis. 33, 391–402 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Jensen, B. B., Kristoffersen, A. B., Myr, C. & Brun, E. Cohort study of effect of vaccination on pancreas disease in Norwegian salmon aquaculture. Dis. Aquat. Organ. 102, 23–31 (2012).

    Article 

    Google Scholar 

  • 37.

    Karlsen, C., Thorarinsson, R., Wallace, C., Salonius, K. & Midtlyng, P. J. Atlantic salmon winter-ulcer disease: Combining mortality and skin ulcer development as clinical efficacy criteria against Moritella viscosa infection. Aquaculture 473, 538–544 (2017).

    Article 

    Google Scholar 

  • 38.

    Jansen, P. A. et al. Sea lice as a density-dependent constraint to salmonid farming. Proc. R. Soc. B Biol. Sci. 279, 2330–2338 (2012).

    Article 

    Google Scholar 

  • 39.

    Overton, K., Samsing, F., Oppedal, F., Stien, L. H. & Dempster, T. Lowering treatment temperature reduces salmon mortality: A new way to treat with hydrogen peroxide in aquaculture. Pest Manag. Sci. 74, 535–540 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Helgesen, K. O., Romstad, H., Aaen, S. M. & Horsberg, T. E. First report of reduced sensitivity towards hydrogen peroxide found in the salmon louse Lepeophtheirus salmonis in Norway. Aquac. Rep. 1, 37–42 (2015).

    Article 

    Google Scholar 

  • 41.

    Walde, C. S., Bang Jensen, B., Pettersen, J. M. & Stormoen, M. Estimating cage level mortality distributions following different delousing treatments of Atlantic salmon (Salmo salar) in Norway. J. Fish Dis. 44, jfd.13348. https://doi.org/10.1111/jfd.13348 (2021).

    Article 

    Google Scholar 

  • 42.

    Aaen, S. M., Helgesen, K. O., Bakke, M. J., Kaur, K. & Horsberg, T. E. Drug resistance in sea lice: A threat to salmonid aquaculture. Trends Parasitol. 31, 72–81 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Gismervik, K., Nielsen, K. V., Lind, M. B. & Viljugrein, H. Mekanisk avlusing med FLS-avlusersystem—dokumentasjon av fiskevelferd og effekt mot lus. Veterinærinstituttets rapportserie 62017. See https://www.vetinst.no/rapporter-og-publikasjoner/rapporter/2017/mekanisk-avlusing-dokumentasjon-av-fiskevelferd-og-effekt-mot-lus (2017).

  • 44.

    Grøntvedt, R. N. et al. Thermal de-licing of salmonid fish—Documentation of fish welfare and effect. Norwegian Veterinary Institute`s Report series 13–2015. https://www.vetinst.no/rapporter-og-publikasjoner/rapporter/2015/thermal-de-licing-of-salmonid-fish-documentation-of-fish-welfare-and-effect (2015).

  • 45.

    Gismervik, K. et al. Thermal injuries in Atlantic salmon in a pilot laboratory trial. Vet. Anim. Sci. 8, 100081. https://doi.org/10.1016/j.vas.2019.100081 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686. https://doi.org/10.21105/joss.01686 (2019).

    ADS 
    Article 

    Google Scholar 

  • 47.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

    Google Scholar 

  • 48.

    Auguie B. gridExtra: Miscellaneous functions for “grid” graphics. R package version 2.3. https://CRAN.R-project.org/package=gridExtra (2017).

  • 49.

    Salama, N. K. G., Murray, A. G., Christie, A. J. & Wallace, I. S. Using fish mortality data to assess reporting thresholds as a tool for detection of potential disease concerns in the Scottish farmed salmon industry. Aquaculture 450, 283–288 (2016).

    Article 

    Google Scholar 

  • 50.

    Aunsmo, A. et al. Methods for investigating patterns of mortality and quantifying cause-specific mortality in sea-farmed Atlantic salmon Salmo salar. Dis. Aquat. Organ. 81, 99–107 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Usher, M. L., Talbot, C. & Eddy, F. B. Effects of transfer to seawater on growth and feeding in Atlantic salmon smolts (Salmo salar L.). Aquaculture 94, 309–326 (1991).

    Article 

    Google Scholar 

  • 52.

    Johansson, L.-H., Timmerhaus, G., Afanasyev, S., Jørgensen, S. M. & Krasnov, A. Smoltification and seawater transfer of Atlantic salmon (Salmo salar L.) is associated with systemic repression of the immune transcriptome. Fish Shellfish Immunol. 58, 33–41 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Ellis, T., Turnbull, J. F., Knowles, T. G., Lines, J. A. & Auchterlonie, N. A. Trends during development of Scottish salmon farming: An example of sustainable intensification?. Aquaculture 458, 82–99 (2016).

    Article 

    Google Scholar 

  • 54.

    Kristensen, T. et al. Effects of production intensity and production strategies in commercial Atlantic salmon smolt (Salmo salar L.) production on subsequent performance in the early sea stage. Fish Physiol. Biochem. 38, 273–282 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Handeland, S. O., Björnsson, B. T., Arnesen, A. M. & Stefansson, S. O. Seawater adaptation and growth of post-smolt Atlantic salmon (Salmo salar) of wild and farmed strains. Aquaculture 220, 367–384 (2003).

    Article 

    Google Scholar 

  • 56.

    Bjørndal, T. & Tusvik, A. Economic analysis of on-growing of salmon post-smolts. Aquac. Econ. Manag. 24, 355–386 (2020).

    Article 

    Google Scholar 

  • 57.

    Bang Jensen, B., Mårtensson, A. & Kristoffersen, A. B. Estimating risk factors for the daily risk of developing clinical cardiomyopathy syndrome (CMS) on a fishgroup level. Prev. Vet. Med. 175, 104852. https://doi.org/10.1016/j.prevetmed.2019.104852 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Iversen, M. et al. Stress responses in Atlantic salmon (Salmo salar L.) smolts during commercial well boat transports, and effects on survival after transfer to sea. Aquaculture 243, 373–382 (2005).

    Article 

    Google Scholar 

  • 59.

    Intorre, L. Safety of azamethiphos in eel, seabass and trout. Pharmacol. Res. 49, 171–176 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Olsvik, P. A., Ørnsrud, R., Lunestad, B. T., Steine, N. & Fredriksen, B. N. Transcriptional responses in Atlantic salmon (Salmo salar) exposed to deltamethrin, alone or in combination with azamethiphos. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 162, 23–33 (2014).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Johnson, S., Constible, J. & Richard, J. Laboratory investigations on the efficacy of hydrogen peroxide against the salmon louse Lepeophtheirus salmonis and its lexicological and histopathological effects on Atlantic salmon Salmo salar and Chinook salmon Oncorhynchus tshawytscha. Dis. Aquat. Organ. 17, 197–204 (1993).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Nilsson, J. et al. Sudden exposure to warm water causes instant behavioural responses indicative of nociception or pain in Atlantic salmon. Vet. Anim. Sci. 8, 100076. https://doi.org/10.1016/j.vas.2019.100076 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Stien, L. H., Lind, M. B., Oppedal, F., Wright, D. W. & Seternes, T. Skirts on salmon production cages reduced salmon lice infestations without affecting fish welfare. Aquaculture 490, 281–287 (2018).

    Article 

    Google Scholar 

  • 64.

    Barrett, L. T., Oppedal, F., Robinson, N. & Dempster, T. Prevention not cure: A review of methods to avoid sea lice infestations in salmon aquaculture. Rev. Aquac. 12, 2527–2543 (2020).

    Article 

    Google Scholar 

  • 65.

    Overton, K., Barrett, L. T., Oppedal, F., Kristiansen, T. S. & Dempster, T. Sea lice removal by cleaner fish in salmon aquaculture: A review of the evidence base. Aquac. Environ. Interact. 12, 31–44 (2020).

    Article 

    Google Scholar 

  • 66.

    Tully, O., Daly, P., Lysaght, S., Deady, S. & Varian, S. J. A. Use of cleaner-wrasse (Centrolabrus exoletus (L.) and Ctenolabrus rupestris (L.)) to control infestations of Caligus elongatus Nordmann on farmed Atlantic salmon. Aquaculture 142, 11–24 (1996).

    Article 

    Google Scholar 

  • 67.

    Imsland, A. K. D. et al. It works! Lumpfish can significantly lower sea lice infestation in large-scale salmon farming. Biol. Open 7, bio036301. https://doi.org/10.1242/bio.036301 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Erkinharju, T., Dalmo, R. A., Hansen, M. & Seternes, T. Cleaner fish in aquaculture: Review on diseases and vaccination. Rev. Aquac. 13, 189–237 (2021).

    Article 

    Google Scholar 

  • 69.

    Elliott, J. M. & Elliott, J. A. Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: Predicting the effects of climate change. J. Fish Biol. 77, 1793–1817 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Finstad, T. & Sigholt, B. Effect of low temperature on seawater tolerance in Atlantic salmon (Salmo salar) smolts. Aquaculture 84, 167–172 (1990).

    Article 

    Google Scholar 

  • 71.

    Grefsrud, E. S. et al. Risikorapport norsk fiskeoppdrett 2018. https://www.hi.no/resources/publikasjoner/risikorapport-norsk-fiskeoppdrett/2018/risikorapport_2018.pdf (2018).

  • 72.

    Hvas, M., Folkedal, O. & Oppedal, F. Fish welfare in offshore salmon aquaculture. Rev. Aquac. 13, 836–852 (2021).

    Article 

    Google Scholar 

  • 73.

    Dórea, F. C. & Vial, F. Animal health syndromic surveillance: A systematic literature review of the progress in the last 5 years (2011–2016). Vet. Med. Res. Rep. 7, 157–170 (2016).

    Google Scholar 

  • 74.

    Fernández-Fontelo, A. et al. Enhancing the monitoring of fallen stock at different hierarchical administrative levels: An illustration on dairy cattle from regions with distinct husbandry, demographical and climate traits. BMC Vet. Res. 16, 110 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 75.

    Samsing, F., Johnsen, I., Dempster, T., Oppedal, F. & Treml, E. A. Network analysis reveals strong seasonality in the dispersal of a marine parasite and identifies areas for coordinated management. Landsc. Ecol. 32, 1953–1967 (2017).

    Article 

    Google Scholar 

  • 76.

    Samsing, F., Johnsen, I., Treml, E. A. & Dempster, T. Identifying ‘firebreaks’ to fragment dispersal networks of a marine parasite. Int. J. Parasitol. 49, 277–286 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 77.

    Myksvoll, M. S. et al. Evaluation of a national operational salmon lice monitoring system—From physics to fish. PLoS ONE 13, e0201338. https://doi.org/10.1371/journal.pone.0201338 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439–446 (2018).

    Article 

    Google Scholar 

  • 79.

    Tennekes, M. tmap: Thematic maps in R. J. Stat. Softw. 84, 1–39 (2018).

    Article 

    Google Scholar 

  • 80.

    NFD (Nærings- og fiskeridepartementet). Forskrift om bekjempelse av lakselus i akvakulturanlegg. Lovdata. https://lovdata.no/dokument/SF/forskrift/2012-12-05-1140 (2012).

  • 81.

    NFD (Nærings- og fiskeridepartementet). Forskrift om bekjempelse av lakselus i akvakulturanlegg. Lovdata. https://lovdata.no/dokument/LTI/forskrift/2012-12-05-1140 (2012).

  • 82.

    Asplin, L., Albretsen, J., Johnsen, I. A. & Sandvik, A. D. The hydrodynamic foundation for salmon lice dispersion modeling along the Norwegian coast. Ocean Dyn. 70, 1151–1167 (2020).

    ADS 
    Article 

    Google Scholar 

  • 83.

    Pierce, D. ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files. CRAN. https://cran.r-project.org/web/packages/ncdf4/ncdf4.pdf (2019).

  • 84.

    Dohoo I., Martin W. & Stryhn H. Veterinary Epidemiologic Research (2nd edn) Charlottetown, Prince Edward Island (VER Inc., 2009).

  • 85.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article 

    Google Scholar 

  • 86.

    Lüdecke, D., Makowski, D., Waggoner, P. & Patil, I. performance: Assessment of regression models performance. CRAN. https://easystats.github.io/performance (2020).

  • 87.

    Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. CRAN. https://cran.r-project.org/web/packages/DHARMa/DHARMa.pdf (2020).


  • Source: Ecology - nature.com

    MIT.nano receives American Institute of Architects’s Top Ten Award for sustainable design

    Push to make supply chains more sustainable continues to gain momentum